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1 Introduction

We develop an evaluation metric for Optimality Theory (OT; Prince and Smolensky 1993) that
allows a learner to induce a lexicon and a phonological grammar from unanalyzed surface forms.
We wish to model aspects of knowledge such as the English-speaking child’s knowledge that the
aspiration of the first segment of khæt is predictable and the French-speaking child’s knowledge
that the final l of table ‘table’ is optional and can be deleted while that of parle ‘speak’ cannot
(Dell 1981). We take it that any theory of phonology would require this knowledge to be learned
rather than innate. We show that the learner we present succeeds in obtaining this kind of knowl-
edge and is better equipped to do so than other existing learners in the literature.

We start, in section 2, by constructing the evaluation metric, based on the principle of
Minimum Description Length (MDL), a criterion growing out of a line of work pioneered by
Solomonoff (1964) and used for various aspects of natural language in Berwick 1982, Rissanen
and Ristad 1994, Stolcke 1994, Brent and Cartwright 1996, Grünwald 1996, de Marcken 1996,
Clark 2001, Goldsmith 2001, Chater and Vitányi 2007, Dowman 2007, Hsu and Chater 2010,
Hsu, Chater, and Vitányi 2011, Goldsmith and Riggle 2012, and Chater et al. 2015, among others;
see also the very closely related Bayesian approach to grammar induction, used in Solomonoff
1964, Horning 1969, and many others. These works target various aspects of linguistic knowledge,
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but none of them address the kind of phonological knowledge that we are interested in here, and
none are designed to work with OT.

We show that the MDL metric, while different from current OT learners, is familiar from
the evaluation criterion that a working OT phonologist might use to choose between competing
hypotheses. By noting the steps that a phonologist might go through in analyzing an unknown
language, we obtain a recipe for the simultaneous induction of lexicon, constraints, and ranking.
We point out that the different steps of the recipe can be unified by observing that they all
involve the optimization of two quantities, one that reflects the compactness of the grammar itself
(including the lexicon) and one that reflects the ease—measured through encoding length—with
which the grammar can be used to describe the data. The MDL evaluation metric for the phonolo-
gist is the sum of the two quantities. After developing the MDL metric for the phonologist, we
suggest that the same criterion can form the basis for an evaluation metric for the learner.

In section 3, we present the learning model in detail along with simulation results. We
demonstrate, using four different datasets generated by artificial grammars, that the MDL evalua-
tion metric enables the successful learning of nontrivial combinations of lexicons and constraints.
Our main result is that the evaluation metric supports the induction of lexicons and constraint
rankings, aspects of the learning task that are required under all versions of OT.

The generality of the metric also allows additional parts of the grammar to be learned without
changing our learner. As we show, it learns not just the lexicon and the ranking of the constraints
but also the constraints themselves. Here not all theories agree that the relevant knowledge is
learned—indeed, classical OT assumes that the content of the constraints is innate. However,
work by Heinz (2007) and Hayes and Wilson (2008) has shown that the acquisition of phonotactic
knowledge is a rich and interesting question, and we believe that learning the content of the OT
constraints (both markedness and faithfulness constraints) from general constraint schemata is at
the very least a direction worth exploring. The learner that we present succeeds in obtaining this
knowledge, combining lexical learning with the induction of specific markedness and faithfulness
constraints, making it a first in this domain as well.

These learning results do require that some traditional aspects of OT analysis and learning
be reconsidered. In particular, as we explain, the principles of Richness of the Base and Lexicon
Optimization do not follow from the MDL metric and are left aside.

In section 4, we review previous proposals for learning within OT. As we discuss in section
4.1, most of the work in the literature focuses on questions that are quite distinct from those
addressed here. We then turn to two approaches that are much closer to our own in their aims:
Maximum Likelihood Learning of Lexicons and Grammars (Jarosz 2006a,b), in section 4.2; and
Lexicon Entropy Learning (Riggle 2006), in section 4.3. We show that these proposals can be
understood in terms of the MDL evaluation metric and that this perspective highlights inherent
difficulties for each of the proposals: Jarosz’s approach favors grammars that describe the data
well but does not take into account the compactness of the grammar itself, while Riggle’s approach
often favors compact grammars but does not take into account how well they describe the data.
In section 5, we discuss remaining questions, and in section 6, we conclude.
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2 Evaluating Phonological Patterns Using Description Length

In this section, we will develop—in several, mostly informal steps—the general proposal that
will serve as the basis for the concrete learner presented in formal detail in section 3. Section 2.1
provides an informal tour of how a phonologist might construct an OT analysis of an unfamiliar
language. Section 2.2 shows how the choices of the phonologist can be quantified, following
Solomonoff 1964 and much subsequent work on MDL. Section 2.3 provides a brief discussion
of where the learner is similar to and where it is different from a phonologist comparing hypotheses.
We will suggest that, despite considerable differences between the phonologist and the learner,
the view of the child as a scientist searching through the grammars made available to it by
Universal Grammar (UG) and comparing them using the MDL criterion is a reasonable view.
Readers familiar with the MDL approach to learning may wish to proceed directly to section 3.

2.1 ab-nese: An Informal Example

Consider a phonologist faced with the task of analyzing a newly discovered language. Suppose
that the phonologist is working with an informant, who produces the following strings:

(1) bab, aabab, ab, baab, babaaaa, babababababaabab, aaab, babababaa, babaaaa, aaab,
babababababaabab, baab, bab, ab, aabab, aabab, baab, babababababaabab, aaab,
babababaa, ab, babaaaa, bab, aaab, ab, aaab, aabab, babababaa, baab

Before examining the data in (1), the phonologist might take an uncommitted stance according
to which any sequence of humanly pronounceable segments of a given length is equally plausible.
After a quick glance at the data, however, the phonologist is struck by the following observation:
of all the phonetically realizable segments, only a’s and b’s appear in the strings produced by
the informant. This can be seen as an overgeneration problem for the preliminary, uncommitted
hypothesis: in the absence of anything within the grammar to rule out the appearance of segments
such as c, d, and e, their absence from (1) must be treated as a surprising accident. The phonologist
concludes that this absence is not an accident and that the new language, call it ab-nese, prohibits
any segment other than a or b. Within the framework of OT, this restriction can be expressed by
positing markedness constraints of the form *c, *d, *e, and so on, which we will abbreviate as
follows:1

(2) Constraints: * ��a, b�

The phonologist may wish to support (2) by running experiments of various sorts. For exam-
ple, the phonologist may confront the speaker with two novel forms, one composed only of a’s
and b’s and the other including some other segment as well. To keep the discussion simple, let

1 Much of the literature on learning in OT assumes that the learner is provided with information about paradigmatically
related forms, but here and in the remainder of this section we will base our discussion on observing raw input forms
and will not assume access to additional information.
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us assume that if the phonologist runs such experiments then, both here and in what follows, the
results support the generalizations made so far.

The constraints in (2) correctly rule out any string that includes segments other than a or b,
thus solving the initial overgeneration problem. As it stands, however, the analysis in (2) still
overgenerates: in the sequence in (1), certain sequences of a’s and b’s, such as ab and babababaa,
appear multiple times, while other sequences of a’s and b’s, such as baba and abb, never appear,
despite being fully compatible with (2). The strings that repeat themselves are these:

(3) 1. ab 3. aaab 5. baab 7. babababaa
2. bab 4. aabab 6. babaaaa 8. babababababaabab

To remedy this second overgeneration problem, the phonologist conjectures that the grammar
of ab-nese includes a lexicon, a repository for information about the specific forms that are
allowed. As a simple starting point, the phonologist posits (3) as the lexicon. Within the framework
of OT, restricting the grammar to forms generated from a lexicon does not immediately address
the overgeneration problem: selections from the lexicon can, in principle at least, surface as any
form; a single entry in the lexicon can thus generate any conceivable output. In order to ensure
that this does not happen and that the elements selected from the lexicon surface unchanged, the
phonologist also posits a constraint, FAITH, that penalizes any changes between the chosen underly-
ing form and its surface form.

(4) Constraints: * ��a, b�, FAITH

Given the lexicon in (3), the constraints in (4) are unviolated, and so no ranking among them
is needed at this point. Note that when we introduced * ��a, b� in (2), its purpose was to address
the initial overgeneration problem that we encountered. Now, with the introduction of the lexicon
and of an undominated FAITH, this problem is resolved independently of * ��a, b�. This does not
mean that * ��a, b� has become redundant, however: if the phonologist fails to take the restriction
on the segmental inventory in ab-nese into account, the fact that the lexicon is written only in
a’s and b’s will have to be viewed as a surprising accident; with the commitment to * ��a, b�,
on the other hand, the lexicon seems much more natural. In other words, the present step involves
a subtle but significant shift in the role of * ��a, b� from an aid in making the raw data look
more natural to an aid in making the lexicon look more natural.2

With the aid of (4), the phonologist now has a grammar that accounts for the fact that the
data in (1) are instances of the entries in (3). The analysis is not fully satisfactory, however: it
misses what seems like a significant generalization, namely, that two b’s never appear in a row
in a surface form. The phonologist characterizes the generalization in terms of an additional
markedness constraint, *bb, which is ranked above FAITH to ensure that bb sequences in the
lexicon will not survive the mapping to surface forms.

2 This shift raises interesting issues regarding the architecture of the lexicon. We will revisit this point briefly in
section 3.3, but leave a more comprehensive discussion of the relevant issues and their resolution for a separate occasion.
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(5) Constraints: * ��a, b�, *bb �� FAITH

Given the new markedness constraint *bb and its ranking above FAITH, as in (5), an observed
surface form such as aabab can now be generated by infinitely many underlying representations
(URs). It can be generated, as before, from the faithful UR /aabab/ (6a). But it can also be
generated from the UR /aabb/ , which would violate *bb if it surfaced unchanged, via a-epenthesis,
as in (6b). And it can be generated from any of the infinitely many URs of the form schematized
in (6c), which again would violate *bb, via b-deletion.

(6) Possible sources for the surface form aabab
a. Faithful UR: /aabab/
b. Unfaithful UR: /aabb/

a-epenthesis: bb N bab
c. Unfaithful UR: any of �/aabnabm/ : n, m � 1�

b-deletion: bb N b

Given the new possibilities for URs that generate the observed surface forms via a-epenthesis
and b-deletion using the constraint ranking in (5), the phonologist can now consider infinitely
many different lexicons in addition to the fully faithful one in (3). However, while deletion and
epenthesis are both possible in principle, epenthesis seems the more natural of the two and will
presumably serve as the default analysis for all the cases above.

It is important to note that the preference for epenthesis over deletion or faithful URs in the
cases above is no more than a default, and that it can be either bolstered or weakened by future
observations of possible correlations between the segments in question and other patterns. Sup-
pose, for example, that a closer look at ab-nese revealed a pattern of lengthening that generally
affects the penultimate segment.3 If that were the case, the a-epenthesis analysis would be sup-
ported if it turned out that aabab was actually [aab:ab]; the lengthening of the antepenultimate
segment could then be seen as penultimate lengthening that ignores the epenthetic a. The otherwise
dispreferred b-deletion analysis would be supported if it turned out that the relevant form was
[aabab:]; the lengthening of the final segment could then be seen as penultimate lengthening
applying to the UR /aababb/ . And an analysis that posits an underlying /aabab/ and does not
use *bb to change the lexicon would be supported if the form was [aaba:b].

Informally, the default preference for epenthesis in ab-nese follows from considerations of
economy: on the assumption that a is epenthesized between two adjacent b’s, the lexicon is
smaller than it is on the assumption that it contains additional b’s that are deleted (or that a surface
form like aabab is stored as the faithful UR /aabab/). The underlying forms, then, are as follows:

(7) 1. /ab/ 3. /aaab/ 5. /baab/ 7. /bbbbaa/
2. /bb/ 4. /aabb/ 6. /bbaaaa/ 8. /bbbbbbaabb/

3 Like the rest of the ab-nese example, the pattern of penultimate lengthening is highly artificial. Attested counterparts
of this pattern include the interaction of stress and epenthesis in languages such as Mohawk and Yimas. See Alderete
1999 and Alderete and Tesar 2002 for discussion.
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The lexicon in (7) is an improvement over (3): an intuitively significant regularity—namely,
the absence of two consecutive b’s—is no longer stated as an accident of the lexicon (as it was
in (3)) but is instead derived systematically by the constraints, leaving the lexicon simpler and
with fewer regularities than before. Note, however, that the constraints in (5) do not allow us to
take full advantage of the improved lexicon. The ranking of *bb over FAITH allows us to correctly
generate all of the observed forms, using a-epenthesis where needed, but it also allows us to
employ b-deletion and map URs including the illicit sequence bb onto other, unattested forms.
For example, the UR bb can be mapped either to the attested bab (through epenthesis) or to the
unattested b (through deletion).

/bb/ FAITH*bb�{a, b}*

bb

b

bab

(8)

*

*

*!a.

b.

c. ☞

In other words, by economizing the lexicon we have introduced a new overgeneration problem.
Fortunately, the new overgeneration problem can be resolved at the cost of a very minimal

further complication of the grammar. To ensure that only a-epenthesis resolves double-b se-
quences, we can split FAITH into two faithfulness constraints: MAX, which penalizes deletions;
and DEP, which penalizes insertions.4 We can now rank *bb above DEP but not above MAX,
ensuring that avoiding bb will justify insertion (of a) but not deletion (of b).

(9) Constraints: * ��a, b�, MAX, *bb �� DEP

Is the analysis complete? The answer is yes, but it will be useful to understand why. The
steps we took in developing the analysis above were meant to address two kinds of concerns: we
wanted to minimize overgeneration with respect to the attested forms, and we wanted to avoid
any pointless complexity in the analysis itself. Let us call the first consideration restrictiveness
and the second economy. As far as the data in (1) are concerned, the analysis, combining the
lexicon in (7) and the constraints in (9), seems fully restrictive: it can generate only those forms
that have been observed. What about economy? As just illustrated, *bb allows us to obtain a
more compact theory. But this is just one among many patterns in the data, and it might seem
tempting to try to capture some of the additional patterns as well. For example, the number of
b’s in the examples happens to always be a power of 2: 1, 2, 4, and 8 (higher powers are missing).
And the number of a’s is always a Fibonacci number: 1, 2, 3, 5, and 8 (all Fibonacci numbers
higher than 8 are missing). Somewhat less exotically, the sequence aaaaa never appears in the
data, and the sequence ba never appears word-finally. In principle at least, there is nothing to

4 To simplify the present discussion, we consider only insertions and deletions as possible modifications.
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prevent us from modifying the grammar so as to take advantage of these patterns and squeeze
them out of the lexicon.

For example, we could add the following markedness constraints to the grammar and rank
all of them above DEP: FIB(a) (penalizing any form in which the number of a’s is not a Fibonacci
number), 2n(b) (penalizing any form in which the number of b’s is not a power of 2), *ba#, and
*aaaaa. We can use these constraints to obtain a shorter UR for the surface form aabab.

/aaba/ DEPMAX

*!

*!

*bb FIB(a) 2n(b) *ba#

aaba

aab

(10)

*

*!

*aaaaa

a.

b.

aabaa

aabab *☞

c.

d.

�{a, b}*

In order to save a single segment in this UR, we needed two new constraints: FIB(a) and
*ba# (the remaining two new constraints were not involved in this case). This trade-off is hardly
a bargain, and it does not improve much through consideration of the remaining forms in the
lexicon. If enough additional forms of the general pattern exhibited by aabab are encountered,
the resulting savings in the storage of the URs will justify the price paid by introducing the new
constraints. But for now, these facts, and infinitely many additional ones, do not help make the
analysis simpler and are best treated as accidents rather than meaningful patterns: the analysis,
as far as the current data—and the goal of minimizing both economy and restrictiveness—are
concerned, is complete.

2.2 An Evaluation Metric for the Phonologist

2.2.1 Analyzing ab-nese Using Description Length The process just described attempts to maxi-
mize the economy and the restrictiveness of the grammar given the data. In section 2.3, we will use
the phonologist’s criterion for comparing hypotheses—the phonologist’s evaluation metric—as a
model for the learner’s evaluation metric. Before we can do that, however, we need to make the
phonologist’s evaluation metric more explicit. In particular, we need to understand how economy
and restrictiveness are measured and how the two measurements are combined. As it turns out,
it is easy to make incorrect choices here, choices that would lead the phonologist to favor hy-
potheses that clash directly with our intuitions regarding linguistic analysis. We will present a
few illustrative cases below. But let us start with what we think is the right choice, first formulated
by Ray Solomonoff (Solomonoff 1960, 1964). According to Solomonoff, a hypothesis is a com-
plete description of the data—think of it as a computer program that runs, prints out the data,
and then halts. The goodness of a hypothesis is determined by its length: the shorter the hypothesis
(e.g., as measured in bits in the source file containing it on the computer), the better it is. It is
often convenient to separate the logic of the program from any accidental aspects of the data and
think of the program as the combination of two distinct parts: the ‘‘real’’ program, or grammar,
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which we will write as G; and the encoding of the data D using the grammar, which we will
write as D:G. Solomonoff ’s view, as applied to OT, is schematized in figure 1. As we will show,
the length of G, |G|, corresponds to the informal notion of economy, while the length of D:G,
|D:G|, corresponds to restrictiveness. The goal of the phonologist, on this view, is to find the
hypothesis that provides the shortest overall length—that is, the grammar that provides the shortest
value for the sum |G| � |D:G|.

Let us illustrate. Suppose we wish to obtain a complete description of the data in (1)—for
example, in order to convey it to a phonologist who has no direct access to our informant. Before
the analysis outlined above, the data would be no more than an arbitrary sequence to us. To
convey it, we would not be able to do better than transmit it symbol by symbol, specifying at
each step which symbol is chosen out of the full alphabet. The usual way of specifying choices
out of a set is as a string of bits—that is, a string of binary choices, each of which can be 0 or
1. If the full alphabet has four elements, for example, we can arrange them in a row—say, a1,
a2, a3, and a4 —and specify the choice using two bits: the first specifying whether the chosen
element is one of the leftmost two or the rightmost two (so 0 says that the chosen element is one
of a1 and a2 and 1 says that the chosen element is one of a3 and a4) and the second doing the
same within the subset specified by the first (so if the first bit was 0 and the second bit was 1,
then the specified element is a2). If there are eight elements in our full alphabet, write them as
a1 to a8, two bits would no longer suffice: we would need an additional bit to specify first whether
the chosen element is among the leftmost four or the rightmost four, after which two bits will
allow us to specify the exact choice as before. More generally, if there are n elements in our full
alphabet, we would need

�

log2 n� bits to specify an individual element. For example, if our
alphabet is the IPA, which has 107 letters and 31 diacritics, we would need

�

log2 (107�31)�
� 8 bits to encode an individual choice. To convey the data in (1) under the null hypothesis,
then, we would need to spend the number of bits we require to encode an arbitrary symbol—eight
if we are using the IPA—times the number of characters in the sequence, including commas.

As soon as we notice that only a’s, b’s, and commas occur in the input data, we can replace
the eight bits per symbol with a fixed code length of two bits per symbol, and the length of the

Lexicon

G

Constraints D:G

0101011010101001010 10101010010 10100010110101

Figure 1
Schematic view of Solomonoff ’s (1960, 1964) evaluation metric as applied to OT. The grammar G consists
of both lexicon and constraints. (The bit string in this figure is notional and is only intended as a schematic
illustration of how some G can be represented using the guidelines discussed in the present section; concrete
examples are discussed in detail in section 3.) The data D are represented not directly but as encoded by
G. The overall description of the data is the combination of G and D:G.
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code drops accordingly.5 Encoding the restriction of the segmental inventory to the set �a, b�
takes up a few additional bits, thus increasing |G | slightly, but this addition is easily offset by
the savings to |D:G | obtained through the drop from eight bits per symbol to two, even for a
relatively short text.6 Note that the phonologist’s notion of overgeneration—that is, of a hypothesis
being overly inclusive, making the attested data seem atypical (and thus surprising)—translates
into a statement about D:G being too long. The comparison between the two hypotheses is schema-
tized in figure 2.

Our next step in the analysis, introducing a lexicon, allows us to derive further savings. If
there are only eight sequences that keep repeating themselves, we no longer need to encode each
segment individually. Instead, we can transmit the lexicon once, at the beginning of the transmis-
sion, and then use log2 8 � 3 bits to specify which word is chosen each time. For babaaaa, for
example, this would mean three bits instead of fourteen bits for each occurrence of the word.

Observing that sequences of the form bb are systematically absent allows us to compress
the lexicon introduced in the previous step: we increase the size of the grammar slightly, by
adding the constraint *bb, and this allows us to decrease the overall size of the grammar by
removing inter-b instances of a. Note that this trade-off is carried out entirely at the level of
economy, that is, in terms of |G | (we will immediately turn to the effect of this move on restrictive-
ness, that is, |D:G|). Here the savings are not as dramatic as they were in the previous steps,
though they might still be meaningful, and they would be even more so with a bigger lexicon
(assuming it conformed to the same pattern).

Null G 8 8

2 2 22 2

8 8 8

D:G

D:G

G � *¬a,b

10101010010 10100010 11001011 11001011 10100010 10100010 . . .

01101010010111001110 10 11 11 10 10 . . .

Figure 2
Two simple hypotheses (schematic). The null hypothesis (top) treats the data as an arbitrary sequence of
segments. Encoding the grammar is simple, but the price paid for encoding the data is high: eight bits per
segment. The hypothesis that treats the data as an arbitrary sequence of a’s, b’s, and commas requires a
slightly more complex grammar, but the savings in encoding the data are noticeable: we now have to pay
only two bits per segment.

5 We ignore here the slight additional savings made possible by using a variable code length—for example, through
Huffman coding (Huffman 1952). See Cover and Thomas 2006 for discussion.

6 How many bits are implied by ‘‘a few’’ and ‘‘slightly’’ depends on the precise encoding scheme that is used. A
concrete example (though for the learner rather than the phonologist) is provided in section 3.
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Next, as long as FAITH is kept as an atomic constraint, resolving an underlying bb sequence
through a-insertion and through b-deletion would incur the same violation marks. This, in turn,
leads to an overgeneration problem that would leave us worse off than with the uncompressed
lexicon: each time the UR bb is selected in order to produce the surface form bab, the system
so far would generate two winning candidates, the attested bab and the unattested b. Again, the
phonologist’s notion of overgeneration translates into an overly long D:G. We would thus have
to spend additional bits to ensure that we produce the former and not the latter. We overcome
this problem by splitting FAITH into two separate constraints, MAX and DEP, and by ranking *bb
above the latter but not above the former. The splitting of FAITH slightly increases the size of the
grammar, but it is a one-time increase, and after that every time the UR bb is selected, it will
lead deterministically to the surface form bab. The past three steps are schematized in figure 3.

Finally, the putative patterns of powers of 2 and the Fibonacci sequence seem quite unhelpful
at this point in terms of compression, as do *aaaaa and *ba#. Unlike *bb, which aided in compres-
sion and was thus taken to capture a meaningful gap, these other patterns would be taken by the
phonologist to capture accidental gaps—from the perspective of description length, capturing
these patterns lengthens |G | more than it shortens |D:G|—and consequently they are not added
to the grammar.

2.2.2 Economy and Restrictiveness Must Be Minimized Together Each of the steps above at-
tempted to improve the analysis by shortening the encoding. In this respect, the phonologist’s
strategy is one among many imaginable strategies incorporating a simplicity bias, a general ap-
proach that is often associated with Occam’s razor. But the details of how simplicity is imple-

Lex�compressed

Lex�compressed

Lex�naive

Con�FAITH,*bb

Con�FAITH

Con�MAX,*bb��DEP

D:GG

11010011010011101101 101110 010 110 011 011 010 110 011 . . .

3333333

3 333333

D:GG

010110010001 1011101001 010 0 110 011 0 011 0 010 0 110 011 0 . . .

34 43 444

D:GG

010110010001 1001101110110 010 110 011 011 010 110 011 . . .

Figure 3
Three more-advanced hypotheses. Introducing a naive lexicon, in which the attested strings are listed, allows
us to describe the data word by word rather than segment by segment, yielding significant savings (top).
Squeezing the pattern *bb out of the lexicon results in a shorter lexicon but longer overall description length:
for each UR that includes the sequence bb, we will now need to specify that the surface form is the result
of a-epenthesis rather than b-deletion (middle). Splitting FAITH into MAX and DEP allows us to maintain
both a short lexicon and a short description of the data at the modest cost of a slight complication of the
constraints, leading to the shortest overall length (bottom).
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mented matter. Crucially, what matters to the phonologist is the entire message length: economy
(i.e., the length of the grammar, including the lexicon) and restrictiveness (i.e., the encoding of
the data given the grammar) must be balanced against one another. Minimizing only the one or
only the other would lead to unsatisfactory results, as we now discuss.

Suppose, for example, that the phonologist had ignored restrictiveness and focused on econ-
omy alone. The phonologist would then never have departed from the initial, perfectly simple
hypothesis that said that any sequence of segments is possible. And if forced to abandon that
hypothesis and accept that only a’s and b’s occurred, the phonologist would have settled on that
hypothesis and moved no further. If forced to move forward and adopt a lexicon, the phonologist
might have had an incentive to minimize it by adding *bb to the grammar and shortening the
URs, but there would have been no cause to split FAITH into MAX and DEP. In each of these steps,
we have a simple but incorrect hypothesis that admits a proper superset of ab-nese. The ab-nese
data will of course never furnish a counterexample to such a hypothesis—an instance of the so-
called subset problem—and the exclusive focus on economy will leave the phonologist with the
incorrect superset language. Since the simpler hypothesis in these cases is overly inclusive, it
will need to be able to encode not only the elements of ab-nese but also those elements of the
superset language that are not in ab-nese, such as b, which can result in an encoding of the ab-
nese data that is considerably longer than under a more restrictive hypothesis that does not need
to be able to encode elements such as b. In other words, an exclusive focus on economy can lead
to a lengthening of |D:G | that more than offsets any gains in |G|. Note that combining a first step
of economy with a second step of restrictiveness will be of little help: the problematic winner in
each of the steps just summarized is strictly simpler than the losing competitor, thus making it
impossible for some tie-breaking criterion in the second step to reverse the overgeneration prob-
lem. Economy alone is the essence of the evaluation metric of Chomsky and Halle’s (1968) Sound
Pattern of English (SPE), and a two-step architecture in which a criterion such as restrictiveness
operates on the outcome of economy is at the heart of the earlier version of the evaluation metric
proposed by Chomsky (1951), as well as what Kiparsky (2007) calls Pān⋅ ini’s razor.7 The problem
for economy has been noted by Braine (1971), Baker (1979), and Dell (1981), and we will revisit
it in our discussion of Riggle’s (2006) Lexicon Entropy learner in section 4.3.

Consider next what would happen if the phonologist chose to ignore economy and focus on
restrictiveness alone. In particular, it is sometimes suggested that, as a remedy to the subset
problem, generalization should be conservative and always choose the smallest language under
consideration that is compatible with the data, a preference known as the Subset Principle (see
Wexler and Culicover 1980, Berwick 1985, Manzini and Wexler 1987; for more recent discussions
of the subset problem in phonology, see Albright and Hayes 2011 and Heinz and Riggle 2011).
From the perspective of description length, restrictiveness alone can be implemented as a prefer-
ence for shortening D:G (i.e., a preference for a grammar that makes the data typical), irrespective

7 A reviewer suggests that the focus on economy (at the expense of restrictiveness) in early generative work may
have come from an intuition that is close to the idea of Exception-Based MDL (Li and Vitányi 2008:397–398), where
the grammar is stored alongside a list of exceptions.
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of |G |. Restrictiveness alone is an approach that respects the Subset Principle. While escaping
the subset problem, a phonologist relying on the Subset Principle runs straight into the mirror
image of the problem for economy alone: instead of wildly overgeneralizing, such a phonologist
never generalizes at all. In the case of ab-nese, for example, a phonologist focusing on restrictive-
ness alone would have been perfectly content with our first lexicon, which simply memorizes
the surface forms, with no incentive to add *bb and compress the URs. This, in turn, would make
a putative future word aab equally easy to accommodate as abb; and while ab-nese is of course
artificial, the counterparts of this prediction for natural languages such as English were recognized
as problematic as early as Halle 1962. We will revisit this prediction in our discussion of Jarosz’s
(2006a,b) Maximum Likelihood learner in section 4.2. The dangers of adhering to the Subset
Principle become particularly clear when the language is infinite (or just too big for the phonologist
to encounter in its entirety). To keep things simple, imagine a dialect of ab-nese, call it zab-nese,
in which any nonnegative number of z’s can precede any word. We would expect a reasonable
phonologist to notice this generalization after enough surface forms have been observed. A fully
restrictive phonologist, however, will never generalize. At any given point, such a phonologist
will have been exposed to a finite number of such z-variants, and these forms will be listed as
part of the grammar, thus increasing |G | with each newly observed form. So while the gains of
economy alone in |G | often lead to the lengthening of D:G, the gains of restrictiveness alone in
|D:G | often arise through memorization of the data in G, which can result in considerable lengthen-
ing of |G|. Note also that, as with our earlier discussion of economy, the problem will not be
solved by using restrictiveness as a first step that then feeds a second criterion such as simplicity.
The incorrect winner at each step in the case of zab-nese will always be strictly more restrictive
than the correct hypothesis, rendering a tie-breaking second step useless.

In short, we must take both economy and restrictiveness into account, and we must minimize
both simultaneously: a good hypothesis is one that balances the minimization of |G| (which favors
simple but often overly inclusive hypotheses) with that of |D:G| (which favors restrictive but
often overly memorized hypotheses). Using the MDL value |G|�|D:G| as the evaluation metric
provides exactly the right kind of balance. As mentioned, the first to propose this idea was
Solomonoff (1960, 1964), who used his discovery to formulate a fully general theory of prediction.
The same idea of viewing hypotheses as programs that output the data and defining their value
according to their length was discovered independently (from a slightly different perspective) by
Kolmogorov (1965) and Chaitin (1966). The length of the shortest program that outputs the data
D is known as the Kolmogorov complexity of D and is written K(D).8 Kolmogorov complexity
is not computable, and while it is an important tool for deriving results about learnability in
principle, as in Chater and Vitányi 2007, it is often necessary to restrict the hypothesis space to
ensure computability. This is done in the frameworks of Minimum Message Length (MML;
Wallace and Boulton 1968) and Minimum Description Length (MDL; Rissanen 1978). To simplify
terminology, and since the differences between the frameworks incorporating Solomonoff ’s in-

8 See Li and Vitányi 2008 for a detailed and thorough discussion of Kolmogorov complexity.
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sight will not be central to our proposal, we will refer to any attempt to minimize |G|�|D:G|
(often within a restricted family of possible grammars) as MDL. The relevance of MDL for
grammar induction was already noted by Solomonoff (1964). Over the years, numerous authors
have used MDL profitably for grammar induction, either as a methodological principle for the
scientist or as a learning criterion for the learner—notably, Berwick (1982), Rissanen and Ristad
(1994), Stolcke (1994), Brent and Cartwright (1996), Grünwald (1996), de Marcken (1996), Clark
(2001), Goldsmith (2001), Dowman (2007), Hsu and Chater (2010), Hsu, Chater, and Vitányi
(2011), Goldsmith and Riggle (2012), and Chater et al. (2015), among others.

In section 1, we mentioned that MDL has not featured centrally in works on acquiring
phonological knowledge. In the literature on learning in OT, the guiding principles (especially
Richness of the Base and Lexicon Optimization) are quite different from MDL. Having tried to
show how MDL arises naturally from the perspective of the working phonologist, let us explain
why the same criterion can make sense for the child learner. With that background, we will then
proceed to present our MDL learner in section 3.

2.3 From Phonologist to Learner

A learner is not a phonologist. The phonologist may, in principle at least, consider any program
as a grammar; the learner, on the other hand, may well be restricted by Universal Grammar (UG)
to a very limited search space. Earlier, for example, we suggested that the phonologist may
consider—but ultimately reject—four patterns in the ab-nese data: the number of a’s is always
a Fibonacci number; the number of b’s is always a power of 2; the sequence aaaaa never occurs;
and the sequence ba never occurs word-finally. While it is conceivable that the child learner is
also capable of entertaining all these patterns, it could also be that some of these patterns are
impossible for the child to represent, or, as discussed by Heinz (2007), the child might be able
to represent certain patterns but incapable of reaching them through its learning procedure. The
differences between the learner and an ideal scientist are the focus of a growing literature on
underlearning, which investigates the limitations on what humans can learn (see, e.g., Smith 1966,
Peña et al. 2002, Endress, Dehaene-Lambertz, and Mehler 2007, Moreton 2008, Endress, Nespor,
and Mehler 2009, Endress and Mehler 2010, Becker, Ketrez, and Nevins 2011).

There are other differences as well. For example, the phonologist and the child differ in the
degree of control each has on their respective inputs: as mentioned earlier, the phonologist may
run controlled experiments using a variety of methodologies, recruit typological data, and obtain
systematic negative evidence; a child, on the other hand, is largely restricted to the kinds of
evidence that are given by the environment. The phonologist may also record many years of data
and make reference to all the information accumulated in this fashion, while the child is quite
unlikely to record explicitly the entire history of the speech to which it has been exposed.9

9 The demand that the learner be able to accomplish its task given typical resource limitations (limited time, partial
access to data, etc.) is sometimes formulated as a requirement of feasibility, as introduced by Chomsky (1965:54) and
discussed further by Wexler and Culicover (1980:17–22), among others.



248 E Z E R R A S I N A N D R O N I K A T Z I R

But in one important respect, the child learner and the phonologist have a great deal in
common: both face the task of making sense of unanalyzed data in the language they are immersed
in, and both bring to the task a hypothesis space, each point in which represents a grammar. Not
all the grammars in the hypothesis space will be able to generate the data in the first place, but
for any grammar that can, we can look for a sequence of instructions to the grammar—a key—that
will generate exactly the part of the data that we have seen. As discussed above, a message
consisting of the combination of a grammar and a key provides a full description of the data, and
we can think of the phonologist as searching the space for the grammar that yields the shortest
such message. The hypothesis space for the phonologist is biased toward mechanisms that work
well with past observations—recall that in discussing ab-nese, we took it for granted that we
could easily encode constraints, ranking, and lexicons—but it is a very big space, and it includes
many additional mechanisms (e.g., if ab-nese turned out to be problematic for OT, we might
consider a complete revision of the architectural premises of the grammar). This was the essence
of the discovery procedure that we built in the previous section.

For the child learner, things are less clear. Like the phonologist, the child attempts to settle
on a point in the hypothesis space (in the case of the child, the hypothesis space is probably
considerably more limited than for the phonologist—for example, either the hypothesis space of
OT or that of SPE but presumably not both). But there is little conclusive evidence to date about
how the child chooses this point. It is conceivable, of course, that the child searches through its
hypothesis space for the hypothesis that yields the most favorable value for some evaluation
metric, and it is conceivable that this metric is MDL; but there are any number of other methods
that the child might be using, and many of them do not amount to optimization using an evaluation
metric at all. For example, the child might look for the first grammar under some enumeration
that is compatible with the data; or might look for a grammar that is not compatible with the
data; or might use the first two words in the input data as a key for selecting a grammar out of
a big table, regardless of compatibility; and so on. Of course, there are also learning procedures
that are considerably more reasonable than those just mentioned. See, in particular, Manzini and
Wexler 1987, Gibson and Wexler 1994, and Niyogi and Berwick 1996 for such procedures for
the hypothesis space provided by the Principles-and-Parameters framework of Chomsky 1981;
in section 4, we will review several procedures of this kind that have been proposed for the
hypothesis space provided by OT. See SPE, Braine 1971, Wexler and Culicover 1980, and Jain
et al. 1999 for further discussion of the child and its space of hypotheses.

In section 3, we will present simulations that show successful learning of several phonological
patterns by the child-as-phonologist model, suggesting that this model is at the very least a viable
approach to phonological learning. Before doing so, we wish to highlight a perspective from
which the child-as-phonologist model, when applied to the hypothesis space provided by UG and
with the MDL evaluation metric, is a particularly natural approach (see Katzir 2014 for an elabora-
tion of this perspective). The child already has access to the hypothesis space, and each point in
that space that allows it to parse the data provides the basis for at least one full description of
the data; all that is missing is the ability to traverse this space and test different hypotheses,
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comparing the messages they support in terms of overall length. If the child can maintain a current
hypothesis and a new hypothesis simultaneously and use them both to parse the data, and if the
child can switch from one hypothesis to another in a way that lets it traverse a portion of the
hypothesis space that allows convergence, it will be able to mirror the phonologist’s search. And
if the child can compare the overall memory space required to encode the data using two hy-
potheses, it can mirror the phonologist’s criterion. The procedure that parallels the phonologist,
then, is available to the child almost in full simply by virtue of having the ability to represent
and use grammars from within the set allowed by UG: indeed, it seems that one would have to
make special stipulations to block such a procedure. If this perspective is right, then, it makes
sense to take the child-as-phonologist model as a methodological starting point.

3 Simulation Results

In this section, we will present evidence that a learner based on the model of the child as MDL
phonologist can succeed on linguistically relevant patterns. Then, in section 4, we will discuss
alternative learners proposed in the literature on learning in OT and attempt to show that these
learners are less successful than our MDL learner in handling patterns of the kind discussed here.

We are not able to test the learner on a real-life corpus at this point. Instead, we will provide
a proof-of-concept demonstration, using datasets generated by artificial grammars that incorporate
phonologically interesting dependencies.10 We first present the general setting for our learning
simulations, including the details of how grammars are encoded, how they are used to encode
the data, and how the search is performed (section 3.1). We then present simulation results for
the ab-nese dataset (section 3.2), move on to a language that exhibits some phonological patterns
familiar from aspiration in English (section 3.3), continue to a dataset showing restricted optional-
ity along the lines of l-deletion in French (section 3.4), and end with a dataset exemplifying the
ability of the current approach to learn from alternations, modeled after voicing assimilation in
Modern Hebrew (section 3.5). As we will show, the learner extracts grammars that seem phonolog-
ically appropriate in all four cases.

3.1 The Setting

3.1.1 Encoding We need to commit in advance to the search space defined by UG. We will
assume that this space is defined by (a) the ability to state lexicons using a fixed alphabet of
feature vectors; and (b) the ability to state constraints and their ranking—which we take to always
be a total ordering—using two kinds of very general constraint schemata, one for faithfulness

10 We will not attempt to speculate on the amount of data that the child may refer to (with one extreme being an
unbounded batch learner, the other a memory-less online learner, and real life presumably somewhere in between). The
learner presented here is a batch learner, but the amount of memory that it uses for the data in the following examples
is relatively small (it is the size of the dataset, and the datasets are small). An investigation of the amount of data used
by the human learner and of whether the current learner can be modified to match this memory constraint must wait for
a separate occasion.
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constraints and one for markedness constraints, as shown in figure 4.11 We wish to emphasize,
though, that our goal is not to argue for this particular theory of UG over other theories; rather,
it is to demonstrate how learning can take place given a search space provided by UG and our
evaluation metric.

Recall that our goal is to encode hypotheses as fully explicit messages—specifically, as
binary strings—and compare them according to their lengths. Once an encoding scheme is chosen,
each grammar G in the search space is associated with a value |G|�|D:G| that is obtained by
combining the description length of G itself (the lexicon and the constraints) and the description
length of the data given G. Here, we will consider one simple—and by no means optimal—encod-
ing scheme, based on the feature table in (11), for the binary features consonantal and continuant;
we assume that the table is given to the learner in advance.12 Every simulation that we present
in the following sections will be accompanied by its corresponding feature table.

cons

a �

b �

s �

cont

�

�

�

(11)

Let us start with measuring the description length of the lexicon. Consider the lexicon in
(12a). Using a delimiter (#) to mark the end of each word and one additional delimiter to mark
the end of the lexicon, we obtain the string representation in (12b). The lexicon is encoded as
a binary string by substituting a two-digit binary code for each symbol in (12b): 00 for �, 01
for �, and 10 for #; given the feature table in (11), this will result in four bits per segment. The
size of the lexicon will be the length of the string in (12c).

(12) a. �asa, ba, bsab�
b. ����������������������

c. 01000000010010000101001000010000010000011010

We use a similar procedure to encode the constraints and their ranking (which we take to
be a total ordering). The constraint hierarchy in (13a) is represented as the string (13b): the

DEP(F ) MAX(F ) IDENT(F ) *F1F2 . . . Fn

Figure 4
Constraint schemata available to the learner. F’s represent feature bundles.

11 The fixed alphabet could be part of the innate endowment of the learner. Alternatively, it could be learned during
an earlier phase of learning. For present purposes, all that matters is that the alphabet is fixed.

12 In some of the simulations below, we will deviate slightly from the encoding scheme presented here. When we
do so, we will state the differences explicitly.
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symbols D, M, I, and P stand for DEP, MAX, IDENT, and phonotactic constraints respectively;13

a delimiter marks the end of each constraint; for phonotactic constraints, a delimiter marks the
end of each feature bundle (the last feature bundle of a phonotactic constraint is therefore followed
by two delimiters); one additional delimiter marks the end of the constraint hierarchy. We enumer-
ate all symbols that can play a role in constraint descriptions and assign each symbol a fixed
binary code as demonstrated in figure 5. The description length associated with the constraint set
is the length of the binary translation of (13b) according to figure 5.

a. DEP(�cons) �� MAX(�cont) �� *[�cons][�cons, �cont] �� IDENT(�cont)
D � cons#M � cont#P � cons# � cons � cont##I � cont##

(13)
b.

We proceed to measure the length of the data given the grammar, |D:G|. For convenience,
let s1, . . . , sn be an enumeration of the surface representations presented as data to the learner
and u1, . . . , um an enumeration of the URs in G’s lexicon. For every choice ui from the lexicon,
the phonological mapping defined by G returns as output a set of surface representations, the set
of optimal output candidates for ui (say, oi,1, oi,2, . . . ).14 Describing a surface representation that
can be parsed by the grammar amounts to specifying two successive choices: a choice of a UR
ui from the lexicon and a choice of an optimal output oi,j of that UR. We assign each choice from
the lexicon a fixed binary code as illustrated in (14a) (for the case m � 5). Choices from sets
of optimal output candidates receive similar treatment (14b): given a UR, all optimal candidates
are enumerated; the number of bits required to specify a choice of an optimal candidate depends
on the total number of optimal candidates for the UR (in the middle table, no code is needed as
the choice is deterministic).

Code

0000

0001

0010

0011

Symbol

D

M

I

P

Code

0100

0101

Symbol

cons

cont

Code

1000

Symbol

#

Code

0110

0111

Symbol

�

�

Figure 5
Binary code assigned to each symbol

13 IDENT penalizes changes of feature values. As before, MAX penalizes deletions, and DEP penalizes insertions.
14 Often that set contains one optimal output, but a tie between two or more candidates is possible in principle. We

will assume that GEN allows for arbitrary insertions and deletions of segments.
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UR Code(14)

u1 000

u2 001

u3 010

u4 011

u5 100

a.

Output Code

u1

o1,1 00

o1,2 01

o1,3 10

Output Code

u2

o2,1

Output Code

u3

o3,1 0 . . .

o3,2 1

b.

Suppose now that we wish to encode s1 given G. If s1 cannot be parsed by G, there is no
finite binary string that can serve as a description of s1, and its description length will be taken
to be infinite. Alternatively, suppose that s1 is equal to the output o1,3 in our example (14b). In
that case, s1 can be described by the binary string 00010 (000 specifies the choice of u1, 10 the
choice of o1,3), so its description length is 5. In general, phonological grammars are ambiguous,
and it is possible that a given surface representation has more than one parse. For example, s1

could also be equal to o3,1, an output of u3 under G. When multiple descriptions are available,
the shortest one will be chosen. In our example, the string 0100 ends up as the shortest description
of s1, a description of length 4.15 We arrive at the total description of D:G by concatenating the
descriptions of s1, . . . , sn. |D:G | is the length of the resulting concatenation. We also chose to
multiply the summand |D:G| by 100 in the simulations for ab-nese (section 3.2) and for aspiration
(section 3.3) because of performance considerations.16

15 Since GEN generates infinitely many candidates, another possibility is that a tie results among an infinite number
of optimal candidates. This scenario can occur when epenthesis is not penalized by the grammar. If this happens, any
output candidate o for a given UR u will have infinitely many variants that differ from o only in occurrences of epenthetic
elements and thus incur exactly the same violations of faithfulness constraints. If, for some most harmonic output candidate,
the markedness constraints fail to eliminate all but a finite number of epenthetic variants, the result will be a tie among
the remaining infinitely many epenthetic variants. For current purposes, we will assume that specifying a choice of one
output from among an infinite set requires infinitely many bits of information. Another direction, not pursued here, is to
decide on a nonuniform assignment of codes to candidates according to some enumeration. As far as we can tell, the
choice does not affect the cases we discuss here. An exploration of this matter must wait for a separate occasion.

16 The number of bits required to describe the data given the grammar is affected by the amount of data the learner
is exposed to. By multiplying this factor by a large number, we avoided working with large corpora that would have
significantly increased the running time of our algorithm. We believe that the question of whether |D:G| is indeed multiplied
by a constant factor is an interesting one that should be empirically investigated. Currently, however, we have nothing
substantial to say about this matter. Our results seem to be robust with respect to the multiplication factor (small changes
do not affect convergence).
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3.1.2 EVAL The algorithmic infrastructure of our system is closely based on the finite-state
implementation of OT developed in Riggle 2004. The constraint hierarchy is represented as an
ordered list of individual constraints, each of which is implemented as a weighted finite-state
transducer. The transducers are intersected to form the EVAL component of OT. See Riggle 2004
for details of implementation and optimization and Heinz, Kobele, and Riggle 2009 for a discus-
sion of the problem and its implications from the perspective of computational complexity.

The properties of EVAL are not taken into consideration in evaluating or comparing the
complexity of hypotheses. In particular, the complexity of constraints as measured by our metric
is blind to the size of their corresponding finite-state machines, and the correlation between the
two does not seem to be very strong.

3.1.3 Search Our focus in this article is the learning criterion. We make no cognitive claims
regarding either the search procedure or the initial state of the search. To make the learner concrete,
though, we must make commitments with respect to both. For the search procedure, we adopt
Simulated Annealing (SA; Kirkpatrick, Gelatt, and Vecchi 1983), a general strategy, schematized
in figure 6 and discussed below, which supports searching through complicated spaces that involve
multiple local optima.

SA proceeds by comparing a current hypothesis with its neighbors in terms of their goodness,
which in our case is the total description length. That is, if a current hypothesis G has G� as its
neighbor, |G| � |D:G| is compared with |G�| � |D:G�|. If G� is better than G, the search switches
to G�. Otherwise, the choice of whether to switch to G� is made probabilistically and depends
both on how much worse G� is and on a temperature parameter. The higher the temperature, the
more likely the search is to switch to a bad neighbor. The temperature is initially set to a relatively

D L input string in �

G L initial_grammar(�)
T L initial temperature
while T � threshold do

G� L random_neighbor(G)
� L [|G�| � |D:G�|] � [|G| � |D:G|]
if � � 0 then

p L 1
else

p L e
�

�
T

end if
choose G L G� with probability p
T L �T

end while
return G

Figure 6
Pseudocode of the search procedure
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high value, and it is gradually lowered as the search progresses, making the search increasingly
greedy. Our initial temperature was 100, and it was lowered according to a cooling schedule in
which the temperature at each step is multiplied by a constant � � 0.999985 to yield the tempera-
ture at the next step. The search ends when the temperature descends below a threshold of 0.01.17

We have not yet conducted a systematic study to determine how robust the results reported below
are with respect to different choices of the search parameters. Again, we stress that our interest
is the evaluation metric and not the search, regarding which we make no cognitive claims.

For the initial state, we assume the naive one in which no patterns in the data have been
discovered. The grammar includes a single faithfulness constraint FAITH that penalizes any struc-
tural change, thus enforcing an identity mapping between URs and surface forms; the lexicon in
the initial grammar is a list of the surface forms in the input data.18 FAITH is included as an
additional symbol in the calculation of the size of the constraint set (figure 5). For any grammar
G, the neighbor grammar G� is generated as a variant of G in which one of the changes in (15)
occurs.

(15) a. A segment is added to the lexicon.
b. A segment is removed from the lexicon.
c. A segment is modified in the lexicon.
d. A constraint with a single feature bundle is added to the constraint hierarchy.
e. A constraint is removed from the constraint hierarchy.
f. A constraint is demoted by one place in the constraint hierarchy.
g. A single feature bundle is added to a phonotactic constraint in the constraint hier-

archy.
h. A single feature bundle is removed from a phonotactic constraint in the constraint

hierarchy.

The modification is chosen according to a uniform distribution over possible changes. All
decisions in a given modification are made randomly as well (positions for insertion, deletion,
and demotion; feature bundles, segments, and constraints for insertion and modification). There
is no upper bound on the size of the lexicon, the size of a phonotactic constraint, or the size of
the constraint hierarchy.

17 Given the initial temperature and the threshold, the number of iterations for our simulations was a fixed 614,019.
The simulations in sections 3.4 and 3.5, in which constraints were given in advance, converged even when the number
of iterations was 92,099. We currently do not have a tight lower bound on the number of iterations required for convergence.

18 In the literature following Smolensky 1996, an initial ordering of Markedness over Faithfulness (M �� F ) is often
assumed as a means to confront the subset problem; but see Hale and Reiss 1998 for arguments in favor of a faithful
initial state. See Albright and Hayes 2011 for further relevant discussion. On the current proposal, restrictiveness is
obtained as a by-product of the MDL evaluation metric rather than as a property of the initial state.
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3.2 ab-nese

Our first dataset is a language similar to ab-nese, presented in section 2.1 and repeated here.

(16) bab, aabab, ab, baab, babaaaa, babababababaabab, aaab, babababaa, babaaaa, aaab,
babababababaabab, baab, bab, ab, aabab, aabab, baab, babababababaabab, aaab,
babababaa, ab, babaaaa, bab, aaab, ab, aaab, aabab, babababaa, baab

Given an alphabet � � �a, b� and one feature �cons (a � [�cons], b � [�cons]), we
generated an initial pool of words by taking all combinations of 1–6 syllables from the set �a,
ab, ba, bab�. We then filtered out all words that included the sequence bb and provided the learner
with the resulting set of words (n � 252). The full input for this simulation (and the following
ones) is provided in appendix A. As discussed in section 3.1.3, the initial state includes a constraint
set with a single FAITH constraint and a lexicon identical to the data.

Initial grammar

Description length: �Ginitial� � �D:Ginitial� � 4,622 � 201,600 � 206,222

(17)

Ginitial �
LEX:
CON:

bab, aabab, ab, baab, babaaa, babababaa, . . .
FAITH

As discussed in section 2.1, the absence of bb sequences from the data can be used to obtain
a more concise description of it. Consequently, the evaluation metric favors grammars that encode
this pattern over grammars that treat it as a mere accident. Our learner converged on a final
hypothesis in which all relevant instances of a have been removed from the lexicon and inserted
by the grammar.

Final grammar

Description length: �Gfinal� � �D:Gfinal� � 4,028 � 201,600 � 205,628

(18)

Gfinal �
LEX:
CON:

bb, aabb, ab, baab, bbaaa, bbbbaa, . . .
MAX([�cons]) �� *[�cons][�cons] �� FAITH

The addition of both the markedness (*[�cons][�cons]) and the faithfulness (MAX

([�cons])) constraints increases the length of CON but helps in minimizing the total description
length. The markedness constraint allows the learner to compress the lexicon by preventing bb
sequences from surfacing. The faithfulness constraint is introduced to ensure that b-deletion incurs
more violations than a-epenthesis. The latter option is therefore deterministically chosen for
satisfying the markedness constraint, and the length of the data given the grammar becomes lower
than it would have been had the faithfulness constraint been left out. The learner has converged
on a simple, restrictive grammar that accords well with our intuitions about what a correct grammar
for the data should look like.

Note that the result differs from the final grammar in our discussion in section 2.1 in two
respects. First, a MAX constraint is added instead of having FAITH split into MAX and DEP. This
occurs since DEP does not yield a shorter description length than FAITH and there is no reason
for the evaluation metric to favor it. The second difference is that our representations only allow
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strict ranking of constraints in CON and so MAX([�cons]) can be ranked anywhere in the hierarchy,
whereas in our previous discussion we assumed that nonobligatory rankings were possible.

3.3 Aspiration

Our next dataset shows a pattern modeled after aspiration in English and is designed to test the
learner on the problem of allophonic distribution. Simplifying, we assume that the ambient lan-
guage has aspirated stops (like th and kh) appearing before vowels but not elsewhere. The distribu-
tion of aspiration is thus entirely predictable. We expect the learner to treat aspirated stops as
allophones of their unaspirated counterparts. Aspiration in the appropriate places should not be
the result of accidents of the lexicon; rather, it should be enforced by the grammar. One way to
enforce the correct distribution of aspiration, in line with earlier work in generative phonology
but generally not with work following the OT learning principle of Lexicon Optimization, is to
remove aspiration from the lexicon altogether and ensure its insertion through the constraints:
the UR of [khæt] becomes /kæt/ and the UR of [thikhit] becomes /tikit/, while surface forms
where aspiration is missing in the right context (like *kat) should be ungrammatical. Importantly,
the grammar should also block aspiration from occurring elsewhere, as in the illicit surface forms
*ath and *khikht.

Previously, we explained why the MDL evaluation metric favors grammars that treat patterns
such as *bb or the present ban on unaspirated prevocalic stops systematically rather than leaving
them as accidents of the lexicon. Adding the relevant constraints to CON increases its description
length but makes it possible to squeeze information out of the lexicon, thereby lowering the total
description length. Here, blocking of aspiration in elsewhere contexts presents a further learnability
challenge. The crucial point is that a grammar that generates aspirated stops before vowels is not
necessarily restrictive enough; the grammar should also prevent cases where URs like /ath/ or
/kikht/ surface with stray aspirated segments.

One way for the learner to approach this problem is to allow forms like ath and kikht to be
represented underlyingly and block *ath and *khikht as part of the input-output mapping. This
direction, in line with the OT principle of Richness of the Base (ROTB), is not available to our
MDL learner: on natural assumptions about the representation of aspiration, a hypothesis with
additional underlying instances of aspiration will be more complex than one without them and
will thus be dispreferred19 and in the absence of such additional instances of underlying aspiration,
a constraint that ensures that they do not surface will serve no compressional purpose and will
likewise cause the hypothesis to be dispreferred. But constraints on outputs are not the only
imaginable response to the restrictiveness problem raised by the aspiration pattern. A different

19 This is true, for example, if aspiration is represented as a separate segment, which is the somewhat simplistic
representation we will use below. It is also true on various other, possibly more realistic ways to represent aspiration. It
is possible, of course, to choose representations that make it cheaper to encode the presence of aspiration than its absence,
but we find it hard to think of a justification for such a choice.
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way for a learner to meet the challenge—one that follows the early generative notion of morpheme
structure constraints rather than ROTB—is to capitalize on the absence of aspiration from the
lexicon in order to describe the lexicon more succinctly. If aspiration can be squeezed out of the
inventory of primitives from which underlying material is chosen, each choice in the lexicon will
cost fewer bits of information. Grammars that ban underlying aspiration will thus rule out URs
like /ath/ and /kikht/ and, consequently, will block surface aspiration in all inappropriate contexts.
Similar considerations of economy have led to the idea of underspecification in phonological
theory (see Archangeli 1988 for an elaboration of this connection, and see Steriade 1995 for much
relevant discussion), and the feature-based encoding of the lexicon that we have made use of so
far fits in naturally with this line of reasoning.

At this stage, we will not attempt to incorporate a mechanism of feature underspecification
into our OT system. Instead, we will explore a segment-based parallel of the same idea that will
allow us to keep our representations simple: aspiration will be represented as an individual segment
[h], allowing the learner to minimize description length by removing instances of [h] from the
lexicon. The lexicon will include a dynamic inventory of segments (initially identical to the set
of segments made available by the feature table), whose length will be measured as well: removing
aspiration from this inventory, thus banning aspiration from URs, will shorten the encoding of
the lexicon. Formally, the lexicon in (19a) is transformed into the string in (19b), with a delimiter
separating the inventory from the URs. The segments in the fixed feature table provided initially
to the learner, in addition to the delimiter, are enumerated and assigned a fixed binary code. If,
during the search, a segment no longer appears in the lexicon, it is removed from the inventory
and the fixed binary codes for the remaining segments are shortened accordingly. Other than that,
the procedure is identical to the one described in section 3.1. Choices of segments for describing
the lexicon are made from the new inventory, not from the original feature table. Accordingly,
describing each lexical segment costs

�

log2(n�1)� bits of information, where n is the number
of segments in the new inventory, and 1 is added because of the presence of the delimiter symbol.
Measuring the size of the constraint set and the size of D:G remains the same.20 We will now
present the learning setting and show that this solution leads to correct predictions.

a.
b. haikpt# khat#ip#khatpit#

{khat, ip, khatpit}(19)

inventory lexicon

The alphabet for our pseudo-English case was � � �a, i, u, p, t, k, h�, and we used the
feature table in (20). We generated all monosyllabic words of the form �CV, VC, CVC� and all

20 We will not attempt to compare the segment-based encoding of the lexicon used in this simulation with the feature-
based encoding that we use in all other simulations. We have successfully tested the segment-based encoding on all
simulations presented in this article (see appendix B), but chose to present the feature-based encoding as the default since
it makes the connection to realistic phonological representations more transparent.
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bisyllabic words of the form �CVCV, VCVC, CVCCV, CVCVC, CVVC� over � (excluding [h];
n � 774). We then randomly selected 200 words, in which we inserted aspiration after every
stop that preceded a vowel.

cons

a �

i �

u �

stop

�

�

�

p �

t �

k �

�

�

�

h � �

spread glottis

�

�

�

velar

�

�

�

�

�

�

�

�

�

� �

labial

�

�

�

high

�

�

�

�

�

�

�

�

�

� �

(20)

As before, the initial state had one constraint (FAITH) and a lexicon identical to the data.
Note that the segmental inventory is now specified next to the lexicon.

Initial grammar

Description length: �Ginitial� � �D:Ginitial� � 4,359 � 160,000 � 164,359

a.

b.

(21)

Ginitial �
LEX:
CON:

{a, i, u, p, t, k, h}; up, thi, khat, iphuk, phikphu, thikhut, . . .
FAITH

Final grammar

Description length: �Gfinal� � �D:Gfinal� � 3,402 � 160,000 � 163,402

Gfinal �
LEX:
CON:

{a, i, u, p, t, k}; up, ti, kat, ipuk, pikpu, tikut, . . .
*[�stop][�cons] ��  FAITH ��  MAX([�spread glottis])

The final grammar includes a markedness constraint that militates against sequences of a
stop followed by a vowel (*[�stop][�cons]) and a MAX([�spread glottis]) constraint that ensures
that aspiration is the only possible repair.21 Aspiration is entirely removed from the lexicon and
inserted by the grammar in the right context. In the following tableau, candidates (22a), (22c),
and (22d) demonstrate the role played by the markedness constraint, while candidates (22e) and
(22f) show the significance of the learned MAX constraint in preventing overgeneration.

21 The feature [�spread glottis] constitutes the simplest choice for the learner to make here: it is the only way to
refer to all underlying segments by using one feature.
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/kat/ FAITH*[�stop][�cons]

*!

*!

*!

*!

*!

kat

khat

(22)

*

*

MAX([�spread glottis])

a.

b.

ktat

kiat *

*

*

**!

☞

c.

d.

ate.

kt

khath

. . .

f.

g.

The segmental inventory has been restricted to �a, i, u, p, t, k�, blocking aspiration in other
contexts as expected; since aspiration cannot be used to describe underlying segments, no UR
can derive forms like *ath and *khikht. In the examples provided to the learner as part of the
simulation, aspiration of p in ip and of k in phikphu would be ungrammatical. The allophonic
distribution has been learned as expected.

3.4 Optionality

The tension between economy and restrictiveness becomes particularly clear in cases that involve
optional phonological processes. The significance of optionality to learnability was articulated
by Baker (1979) and Dell (1981), who noted that optionality leads an economy-only evaluation
metric, such as that provided in SPE, directly into the subset problem. In this section, we present
a learning simulation modeled after one of Dell’s cases and demonstrate how MDL provides the
desired remedy where optionality is concerned.

Let us first consider a concrete example, a modified version of one of Dell’s French examples,
before moving on to state the problem more generally. Dell’s original example concerns the
optional deletion of l word-finally when preceded by an obstruent but not when preceded by a
sonorant (and when followed by a pause or a consonant-initial word). Thus, table ‘table’ can be
pronounced [tabl] or [tab] in the appropriate context, while parle ‘speak’ is always pronounced
[parl] and never *[par]. We have revised the example to allow an easy formulation of optionality
in the OT framework. In OT, optionality could arise when URs have more than one optimal
output. Instead of dealing with a process that optionally takes place (but might not apply), we
chose to handle a case where a markedness constraint could be resolved by two distinct repairs
that are equally penalized.

Consider a grammar that handles consonant clusters as follows: an unfavorable sequence
C1C2 is optionally resolved either by i-epenthesis between the two consonants or by C2-deletion.
A UR like /tabl/ would surface either as [tabil] or as [tab]. In addition, the grammar generates
surface forms that appear as if they could have been derived by the same process, but in fact
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they are not. For example, the UR /paril/ is faithfully mapped into [paril], whereas *[par] is
ungrammatical. A learner exposed to �[tabil], [tab], [paril]� would face an instance of the subset
problem. On the one hand, it would be justified in making the generalization that [tabil] and
[tab] are generated from the same UR. A learning strategy based solely on economy would
succeed in making this inductive leap: a grammar that includes one UR (/tabl/) can be more
economical than a grammar that has two URs (/tabil/ and /tab/), even at the cost of introducing
the relevant rule or constraint. On the other hand, if only economy is taken into consideration, a
UR like /parl/ that is strictly simpler than an alternative /paril/ would be preferred. Such a
grammar would correctly generate [paril] from /parl/ , but since a consonant cluster could be
optionally resolved by deletion, that grammar would also generate the ill-formed *[par]. The
process involving optionality, which we will refer to as P , should not be extended to operating
on the UR of [paril]. Our target grammar, Gtarget, is strictly simpler than the overly restrictive
identity grammar Gidentity, but it has a strictly simpler alternative, call it Gsimple, that overgeneral-
izes.

(23) a. Gsimple (economy only; overgeneralizing): Admits an overly permissive version of P.
b. Gtarget (economy and restrictiveness balanced; correct): Admits an appropriately

restricted version of P.
c. Gidentity (restrictiveness only; complex grammar; undergeneralizing): Does not admit

P.

The problem faced by the learner, then, is to generalize beyond the data (by applying P’s
operation to /tabl/), but to prevent excessive generalization (by precluding P’s operation on the
UR of [paril], which would generate the ungrammatical *[par]).22

In terms of MDL, minimizing the size of the grammar would generally be beneficial unless
it is counterbalanced by an increased length of data encoding given the grammar. Having to make
more choices in the face of optionality results in such an increase, as we showed in section 2 for
the case of ab-nese. In the case discussed here, the dissimilar grammatical treatment of superfi-
cially similar surface forms (tabil vs. paril) is a consequence of differences in the compression
benefits that each one provides. Encoding [tabil] as the output of /tabl/ would require paying
one bit of information to specify its choice over [tab] (since this is a binary choice). Generally,
collapsing [tabil] and [tab] into a single UR would allow enough compression to justify the cost
of optionality (since the result would be at least three segments shorter), while the slight compres-
sion gained by eliminating a single vowel i from /paril/ would not.

We will now show that our learner converges on the correct Gtarget, to which the MDL
evaluation metric assigns the best score. Moreover, it will do so without being told which forms

22 In Dell’s original paper, only hypotheses corresponding to Gsimple and Gtarget are considered. Dell proposes a
learning strategy that always favors grammars that are more restrictive, and this strategy works well for cases in which
these are the only choices. As we have shown, however, such a strategy will not work in a more general setting: it will
have no reason to reject the problematic Gidentity, which does not generalize at all, in favor of Gtarget.
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(if any) should be collapsed. Since our intention here is to present a proof-of-concept learning
of restricted optionality, we will deviate from our earlier setting and provide the learner with the
final constraint set in advance. To keep with our previous assumptions, the initial ranking of the
constraints will be a faithful one. The feature table is presented in (24).

cons

a �

i �

b �

high

�

�

�

p �

d �

t �

�

�

�

l � �

stop

�

�

�

son

�

�

�

�

�

�

�

�

�

� �

labial

�

�

�

liquid

�

�

�

�

�

�

�

�

�

� �

r � � � �

voice

�

�

�

�

�

�

�

� � �

(24)

The data consisted of three pairs (tabil, tab, tapil, tap, labil, lab) that were to be collapsed
and two unpaired forms (paril, radil). Each surface form was presented 25 times to the learner.23

In the final grammar, the learner has correctly collapsed each pair into one UR by arriving at a
suitable constraint ranking. As expected, the vowel i has not been removed from the unpaired
forms, despite the benefit in economy that this move could have afforded. Note that in the final
grammar, the length of D:G has increased significantly from the length of the initial grammar (from
600 to 750); this reflects the final grammar’s decreased restrictiveness owing to the collapsing of
pairs of forms into single URs. The increase in |D:G| in this particular case is more than offset
by the decrease in grammar size.

Initial grammar

Description length: �Ginitial� � � D:Ginitial� � 589 � 600 � 1,189

a.

b.

(25)

Ginitial �
LEX:
CON:

tabil, tab, paril, tapil, tap, radil, labil, lab
FAITH ��  DEP([�high]) ��  MAX([�liquid]) ��  *[�cons][�cons]

Final grammar

Description length: �Gfinal� � � D:Gfinal� � 415 � 750 � 1,165

Gfinal �
LEX:
CON:

tabl, paril, tapl, radil, labl
*[�cons][�cons] ��  FAITH ��  DEP([�high]) ��  MAX([�liquid])

23 We presented each example 25 times to the learner in order to prevent overgeneration by ensuring that optionality
is not too cheap.
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The tableau in (26) demonstrates the final grammar at work.

/tabl/ MAX([�liquid])

*

*

FAITH DEP([�high])*[�cons][�cons]

tabl

tab

(26)

*!

*!a.

b.

tal

tabil *

☞

☞

c.

d.

tabal

. . .

* *!e.

Significantly, the overgenerating Gsimple presented above would have led to a longer descrip-
tion length compared with the correct hypothesis: as shown in (27), by removing all underlying
instances of i, the grammar itself would have been more economical, but the overall description
length would have been higher.

/parl/ MAX([�liquid])

*

*

FAITH DEP([�high])*[�cons][�cons]

parl

par

b.

a.

*!a.

b.

paril

. . .

☞c.

Overgenerating grammar

Description length: �Gsimple� � �D:Gsimple� � 387 � 800 � 1,187

(27)

Gsimple �
LEX:
CON:

tabl, parl, tapl, radl, labl
*[�cons][�cons] �� FAITH �� DEP([�high]) �� MAX([�liquid])

3.5 Alternations

In previous examples, we considered phonological grammars that map URs to surface forms
regardless of the contexts they appear in. Our next step will be to show that our learning criterion
extends naturally to learning morphophonological alternations. We will examine the behavior of
our learner on a dataset created by concatenating a suffix to a base set of forms. A phonological
process would change some of those forms at the boundary, resulting in forms that are realized
differently in two different contexts: such forms would surface faithfully when occurring indepen-
dently but would be phonologically altered in the environment of the suffix. To see how the
procedure works, consider the Hebrew verbs katav ‘write’ and daag ‘worry’ along with the 2nd
person feminine suffix -t. Assuming that Modern Hebrew speakers’ obstruents assimilate in voic-



O N E V A L U A T I O N M E T R I C S I N O P T I M A L I T Y T H E O R Y 263

ing to a following obstruent, our dataset would include katav, kataft, daag, and daakt. Our learner
will know neither about the morphological constituency of these forms nor that pairs of them are
derivationally related. Instead, we will allow the learner to perform segmentation and represent
suffixes as part of the lexicon. In addition, following the lead of Goldsmith (2001), we will allow
URs to be stored with pointers to suffixes that they attach to (a pointer from a UR to a suffix
means that both the UR itself and the UR combined with the suffix can be inputs to the grammar).
If our view of learning as compression is correct, morphophonological alternations should fall
out as by-products of two distinct mechanisms: phonological induction, which we have discussed
in previous sections, and segmentation, which we will now introduce. Thus, if the learner is
provided with enough examples, a grammar like the following, presented schematically, should
lead to a shorter description length compared with a naive grammar that memorizes the data and
captures no generalizations:

(28)
G �

LEX:
CON:

katav{-t}, daag{-t}; Suffixes:{t} 
assimilation-enforcing constraint ranking

In other words, compressing the lexicon by collapsing multiple surface forms into a single
UR would justify, in terms of total description length, the addition of assimilation-enforcing
constraints to CON along with their appropriate ranking. To see how this prediction is borne out,
consider the small dataset of eight words in (29), generated according to the procedure described
above. In (29), four basic words have been concatenated with a suffix -t, triggering two phonologi-
cal processes. In 1–2 and 3–4, suffixation results in regressive obstruent devoicing. In 5–6, two
adjacent coronals are separated by e-epenthesis, thus blocking voicing assimilation. In 7–8, neither
of the two environments is met and the basic form remains unchanged.

(29) 1. katav 3. daag 5. rakad 7. takaf
2. kataft 4. daakt 6. rakadet 8. takaft

As in section 3.4, we provide the learner with the final constraint set in advance for the
present simulation. We also do not incorporate the costs of suffixes and pointers to them: the
size of the lexicon in (28) is equal to the size of the lexicon �katav, daag�; choice of a UR in
order to describe a surface form is specified from this latter lexicon, ignoring the cost of suffixa-
tion (e.g., unsuffixed katav is specified as the UR for both its unsuffixed and suffixed outputs).
See Goldsmith 2001 for much relevant discussion of how the costs of suffixes and pointers to
them can be taken into account. Here, GEN is allowed to arbitrarily change segments in addition
to inserting and deleting, and the search procedure is extended to perform the following additional
moves in the hypothesis space: create suffix (only one suffix at a time is permitted), remove
suffix, add pointer, and remove pointer. As before, a modification is chosen according to a uniform
distribution over all possible changes. The feature table in (30) was provided to the learner.
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cons

a �

I �

e �

voice

�

�

�

t �

d �

g �

�

�

�

k � �

high

�

�

�

labial

�

�

�

�

�

�

�

�

�

� �

ATR

�

�

�

�

�

�

�

�

�

�

rhotic

�

�

�

�

�

�

�

v � � � �

coronal

�

�

�

�

�

�

�

� �

f � � � � � �

r � � � � � �

(30)

The learner’s task in this case, then, is threefold: to discover the -t suffix by performing
segmentation; to learn a constraint ranking that enforces regressive devoicing and epenthesis
between coronal consonants; and to collapse pairs of surface forms into a single UR, without
knowing in advance which forms should be collapsed. In the results presented below, all three
goals have been reached. Note that the grammar includes the markedness constraints *[�cons,
�voice][�voice] and *[�coronal][�coronal] that trigger voicing and epenthesis, respectively.
All other constraints, when appropriately ranked, enable the elimination of losing candidates.

Initial grammar

Description length: �Ginitial� � �D:Ginitial� � 864 � 24 � 888

a.

b.

(31)

Ginitial �

LEX:

CON:

katav, daag, rakad, takaf, kataft, daakt, rakadet,
takaft; Suffixes:{
FAITH ��  MAX([�cons]) ��  DEP([�ATR]) ��  IDENT([�voice])
��  IDENT([�cons]) ��  IDENT([�labial]) ��  IDENT([�labial])
��  IDENT([�high]) ��  IDENT([�high]) ��  *[�coronal][�ATR]
��  *[�coronal][�coronal] ��  *[�cons, �voice][�voice]

*[�cons, �voice][�voice] ��  *[�coronal][�ATR]
��  *[�coronal][�coronal] ��  IDENT([�high]) ��  IDENT([�voice])
��  DEP([�ATR]) ��  FAITH ��  IDENT([�labial]) ��  MAX([�cons])
��  IDENT([�labial]) ��  IDENT([�cons]) ��  IDENT([�high])

}

Final grammar

Description length: �Gfinal� � �D:Gfinal� � 520 � 16 � 536

Gfinal �

LEX:
CON:

katav{-t}, daag{-t}, rakad{-t}, takaf{-t}; Suffixes:{t}
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4 Previous Proposals

In this section, we will use the perspective provided by the evaluation metric to take a critical
look at previous learning algorithms that have been proposed in the literature on OT. In section
4.1, we briefly review the main efforts in the literature, efforts that, as we will explain, have a
somewhat different focus from our own. The next two sections concern proposals that are much
closer to ours: Maximum Likelihood Learning of Lexicons and Grammars (Jarosz 2006a,b, 2010),
discussed in section 4.2; and the Lexicon Entropy Learner (Riggle 2006), discussed in section
4.3. We will show that each proposal targets one of the two criteria of economy and restrictiveness
but not both, leading to challenges of the kind discussed above for the scientist. Our own proposal,
presented earlier, can thus be seen as subsuming both, balancing in a principled way between the
two biases.

4.1 Constraint-Reranking Approaches

As mentioned in section 1, the literature on OT has taken considerations of learning very seriously.
Obviously, we will not be able to do justice to all the relevant literature within the scope of this
article. For the most part, however, this literature has concerned itself with questions that are
quite different from those motivating the present proposal. Specifically, some of the most influen-
tial proposals, such as Recursive Constraint Demotion (RCD; Tesar and Smolensky 1998, 2000),
Biased Constraint Demotion (BCD; Prince and Tesar 2004), the Gradual Learning Algorithm
(GLA; Boersma and Hayes 2001), and the Maximum Entropy model of Goldwater and Johnson
(2003), assume that the learner has access to pairs of URs and surface forms (as well as a finite
inventory of universal constraints). Clearly, these works do not suppose that the child is given
these pairs explicitly by the environment. Rather, such proposals are to be thought of as part of
a bigger system that also includes a learner for the pairings of URs and surface forms. Since it
is integrated learners for both constraint rankings and lexicons that we are interested in, we hope
that for the time being it is reasonable to set aside proposals of this kind that rely on an unspecified
learner to obtain pairings of URs and surface forms.

Among constraint-reranking approaches, there is one family of proposals, which we will
refer to as paradigm-based lexicon learners, in which constraint reranking is combined with some
lexical learning. These proposals, which include those by Tesar (2006, 2009, 2014), Apoussidou
(2007), Merchant (2008), and Akers (2012), have the following in common: they all use paradigms
to extract information about alternations, which in turn supports the learning of properties of URs.
Consider, for example, a language like German in which a voicing contrast in obstruents is
neutralized word-finally. Given a pairing of paradigmatically related surface forms such as [rat]
‘wheel.sg’ and [red%] ‘wheel.pl’, paradigm-based learners may conclude that the UR in both cases
is /rad/; in particular, the UR is nonidentical to the surface form [rat]. Outside of alternations,
paradigm-based learners posit URs that are identical to the surface forms, thus following the
principle of Lexicon Optimization (Prince and Smolensky 1993, Inkelas 1995).

Alternations are a central source of information, and we agree with the paradigm-based
approach that this source should not be overlooked. For example, it is hard to think of a different
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basis for learning that the UR for ‘wheel’ in German is /rad/ while that of ‘council, advice’ is
/rat/: the surface form in both cases is [rat]; but the plural form of ‘wheel’ is [red%], while that
of ‘council’ is [retU]. However, while alternations are undoubtedly important in discovering URs,
they are a special case of a more general phenomenon and would ideally fall out of whatever
mechanism handles the induction of phonological patterns and of the lexicon. The MDL learner
that we presented above treats alternation-based learning as exactly this kind of special case, as
we showed in section 3.5. Paradigm-based learners, on the other hand, treat the domain of alterna-
tions as a world unto itself. Not surprisingly, then, the paradigm-based learners in the literature
offer no obvious generalization for properties of URs that do not involve alternations.

The challenge for constraint reranking and Lexicon Optimization has been discussed by
Alderete and Tesar (2002), McCarthy (2005), and Krämer (2012), who show that constraint-
reranking learners—whether paradigm-based or not—must be modified so as to learn nonidentical
mappings from surface forms to nonalternating URs. McCarthy (2005) discusses evidence from
languages like Choctaw, Japanese, Rotuman, and Sanskrit, in which some nonalternating URs
are claimed to be distinct from their surface forms. McCarthy suggests that, in these languages,
nonidentical mappings in alternating forms are extended to nonalternating forms. Krämer (2012)
discusses this and other ways in which nonidentical mappings can be inferred for nonalternating
forms. However, these ideas have yet to be turned into explicit learners, leaving the task of
learning nonidentical mappings for nonalternating forms as a challenge for constraint-reranking
approaches, including paradigm-based learners.

But regardless of whether or not it turns out to be feasible to use information from alternations
to infer nonidentical mappings in nonalternating forms, Alderete and Tesar (2002) make an even
stronger claim: that nontrivial learning must take place even in the absence of alternations. The
argument is based on stress-epenthesis interactions in languages like Yimas, Mohawk, and Selayar-
ese. For a particularly transparent example of learning without alternations, recall the case of ab-
nese and in particular the discussion of how the constraint *bb might interact with a hypothetical
pattern, considered in section 2.1, of lengthening the penultimate segment of words. We noted
that a surface form such as [aab:ab], with penultimate lengthening, would provide support to
/aabb/ as the corresponding UR. There was no alternation involved to help with this inference,
and none was needed. A real-world counterpart of the artificial ab-nese example is the interaction
of stress and epenthesis in Yimas, used by Alderete and Tesar (2002) to argue explicitly for
learning nonidentical mappings from surface forms to URs even in the absence of supporting
alternations. Until a paradigm-based learner is proposed that generalizes beyond alternations, we
conclude that, like the constraint-reranking approaches mentioned above, such learners can be
set aside within the present context.

We now turn to two learners that, unlike constraint-reranking approaches, support the learning
of nonidentical mappings for nonalternating forms as well, making them more directly comparable
to our MDL-based learner.

4.2 Maximum Likelihood Learning of Lexicons and Grammars

Jarosz (2006a,b) proposes an algorithm, Maximum Likelihood Learning of Lexicons and Gram-
mars (MLG), that uses the principle of Maximum Likelihood (ML) to learn lexicons and constraint
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rankings. Working within a probabilistic version of OT, Jarosz assumes that a hypothesis is a
distribution over constraint rankings coupled with a distribution over URs for each morpheme.24

The learner is given the set of constraints in advance (either as part of the innate component or
perhaps through a separate module for learning constraints), along with candidate URs for each
morpheme. The learner then attempts to find the hypothesis that maximizes the likelihood of the
data. The search starts with an uncommitted lexicon, in which all candidates for any given mor-
pheme are equally likely, and the search for the best hypothesis is performed by the Expectation
Maximization algorithm (EM; Dempster, Laird, and Rubin 1977).

Let us demonstrate with a simple variation on ab-nese in which we have the same data
sequence as in (1) but are restricted to working with the constraints *ab, *p, and IDENT, all three
of which are given to us in advance; we will also assume the knowledge that b has p as a featural
variant and that a has e. The learning process will start with the hypothesis that for any given
morpheme, all possible URs are equally likely. That is, the initial hypothesis provides the following
distribution over the lexicon (along with a distribution over the possible rankings of the con-
straints):

(32) a. M1 (ab) URs: ab (.25); ap (.25); eb (.25); ep (.25)
b. M2 (bab) URs: bab (.125); bap (.125); beb (.125); pab (.125); bep (.125); pap (.125);

peb (.125); pep (.125)
c. M3 (aaab) URs: aaab (.0625); aaap (.0625); aaeb (.0625); aeab (.0625); eaab

(.0625); aaep (.0625); . . .
d. M4 (aabab) URs: . . .
e. M5 (baab) URs: . . .
f. M6 (aababaaaabab) URs: . . .
g. M7 (babababaa) URs: . . .
h. M8 (babababababaabab) URs: . . .

On Jarosz’s assumptions, the correct morpheme for each surface form has been identified
in advance and is available to the learner. Using this knowledge, each hypothesis defines a
probability distribution over surface forms that can be computed by enumerating the possible
URs and the different constraint rankings. Take the surface form ab, for example: suppose we
encounter it in a certain position in the data, and suppose further that this position has been
correctly identified as expressing the morpheme M1. Our goal is to compute its likelihood, and
we do this by enumerating the different URs that M1 is associated with—in this case, ab, ap, eb,
and ep—and by computing the conditional probability of the surface form ab given each of the
URs; the final answer is the weighted sum of these conditional probabilities, each weighted by
the probability of the relevant UR.

The likelihood of the surface form ab given that the morpheme is M1(33)

P(surface � ab� M1) � P(surface � ab�u) P(u) �
u�{ab,ap,eb,ep}

24 This probabilistic version of OT is distinct from Stochastic OT (Boersma 1998, Boersma and Hayes 2001).
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The probabilities of the different URs are part of each hypothesis. For example, in the initial
hypothesis (32), the distribution is uniform, with each UR for M1 having a probability of .25.
What remains is the computation of P(surface � ab|u) for any particular UR. This is done by
looking at the different constraint rankings and their probabilities (again, part of every hypothesis).
To see how this is done for the UR ab, consider (34).

r1 *ab ��  *p ��  IDENT

r2 *ab ��  IDENT ��  *p

r3 IDENT ��  *ab ��  *p

r4 *p ��  *ab ��  IDENT

r5 *p ��  IDENT ��  *ab

r6 IDENT ��  *p ��  *ab

Ranking ri P(ri)

.2

.15

.05

Optimal Ok

eb

eb

ab

.1

0

.5

eb

ab

ab

(34)

The probability of the surface form ab given the UR ab is obtained by summing over the
rows in which the surface form ab is the winner. In the present case, these are the third, fifth,
and sixth rows: P(r3) � P(r5) � P(r6) � .05 � 0 � .5 � .55. By repeating the computation
with the other possible URs for M1, we obtain the required values to compute the likelihood of
the surface form ab given M1 according to (33).

ML addresses the restrictiveness requirement directly: any overgeneration will lead to spend-
ing probability mass on forms that do not occur.25 An ML grammar is thus a fully restrictive one.
Meanwhile, starting from an uncommitted lexicon as in (32) encourages the learner to consider
hypotheses that rely on the constraints—rather than on accidents of the lexicon—to encode
patterns in the input data. Such hypotheses are in line with the OT principle of ROTB. From an
information-theoretic perspective, an uncommitted lexicon is one with high entropy. As we will
show in the next section, lexicon entropy (though in a form different from Jarosz’s) can sometimes
stand proxy for economy, both criteria sometimes favoring a smaller lexicon from which signifi-
cant patterns have been extracted over a more complex one in which those patterns remain.

We noted in section 2.2 that restrictiveness must be simultaneously balanced against economy
in order to provide an adequate evaluation of hypotheses, and we discussed the problematic results
of unchecked restrictiveness. Despite the entropic starting point, MLG suffers from the same
problem. Let us start by recalling the dangers of pure restrictiveness. Without the balancing force
of economy, restrictiveness will make the learner attempt a full memorization of the data. If the
learner can memorize the entire sequence of data, it will do so. The only thing that can stop it
is its own representational limitations. For example, if it cannot represent the order of elements

25 This closely mirrors the minimization of |D:G| alone under a description-length approach.
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in the input data, it will have to resort to an approximation.26 In our modified ab-nese case, the
following hypothesis will receive likelihood 1, the highest possible score:

(35) a. M1 (ab) URs: ab (1); ap (0); eb (0); ep (0)
b. M2 (bab) URs: bab (1); bap (0); beb (0); pab (0); bep (0); pap (0); peb (0); pep (0)
c. M3 (aaab) URs: aaab (1); aaap (0); aaeb (0); aeab (0); eaab (0); aaep (0); . . .
d. M4 (aabab) URs: aabab (1); . . .
e. M5 (baab) URs: baab (1); . . .
f. M6 (aababaaaabab) URs: aababaaaabab (1); . . .
g. M7 (babababaa) URs: babababaa (1); . . .
h. M8 (babababababaabab) URs: babababababaabab (1); . . .

(36) IDENT �� *ab �� *p

The hypothesis summarized in (35) and (36) is clearly not what we want: it has simply
memorized the data, leaving the absence of p as an accident of the (uncompressed) lexicon. By
Jarosz’s ML criterion, however, this hypothesis obtains a perfect score; other contenders can at
most obtain a tie with this memorized hypothesis. This problem is quite general: as long as we
can list the observed surface forms as having probability 1 (and as long as we can rely on
morpheme identification, as in Jarosz’s examples), MLG will give likelihood 1 to the fully memo-
rized hypothesis, using the ranking of faithfulness over markedness. Going back to our original
ab-nese case, ML will see no benefit in squeezing *bb out of the lexicon and into the constraints.
In English, the same will hold with respect to aspiration: if IDENT outranks the other constraints,
a lexicon that memorizes the surface forms with probability 1, including aspiration, will give the
data likelihood 1 (again, the highest possible score). We will thus be left without an account of
why speakers of English fail to notice the difference between the aspirated th in ‘tack’ and the
unaspirated t in ‘stack’.27 Worse, there will never be any generalization. As we discussed in
section 2.2, restrictiveness alone will fail on any input sequence that shows a proper subset of
the possible forms. Earlier, we demonstrated this for the phonologist in the case of zab-nese, in
which any nonnegative number of z’s can precede any word. As we discussed, a restrictiveness-
only phonologist will fail to make this generalization, instead memorizing the finite subset of the
infinite allowable z-forms seen so far and assigning zero probability to any of the accidental gaps
in the input data. MLG, similarly aiming for restrictiveness only, will run into the very same
problem.

26 What this approximation is varies. One option is to treat each element as being independently drawn from the
lexicon according to a fixed probability distribution. An ML learner that makes such assumptions will memorize the
empirical distribution of the elements in the data. The assumptions behind MLG are somewhat different: here the learner
operates on the output of a morpheme analyzer, which leaves the ML learner the task of determining the conditional
probabilities along the lines discussed earlier.

27 If one is interested in learning the constraints themselves—as we were in our own learning examples—the inability
of the ML learner to benefit from compressing the lexicon will be even more noticeable: a hypothesis with a listing of
the surface forms (each with probability 1) and a single faithfulness constraint will always be optimal.
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What about the uncommitted initial state as a cure for memorization? In Jarosz’s examples,
the learner does not end up memorizing the input data, and we mentioned that the uncommitted
initial state of MLG is designed to encourage the learner to be reasonable. Unfortunately, such
encouragement is generally short-lived. It affects the beginning of the search, but if the search
is capable enough, the ML criterion will necessarily lead the learner to a maximally memorized
hypothesis. That Jarosz’s examples do not exhibit such memorization we must attribute to peculiar-
ities of the search procedure. The EM algorithm is known to get caught in local optima, which
could account for these results. Moreover, it is possible that the search has stopped before conver-
gence. In other words, what prevents the problematic ML metric from hurting the learning process
is a problematic search procedure that fails to find hypotheses that are global winners in terms
of ML. Since modeling the search goes beyond the goals of current research, we conclude that
the entropic initial state is not capable of rescuing ML as the learning criterion for the child.

4.3 Lexicon Entropy Learner

We just showed that an uncommitted—or entropic—initial state does little to help the learner.
Assuming that an entropic lexicon is indeed a relevant property of good hypotheses, the remedy
seems clear: turn the requirement into an active force by incorporating it into the learning criterion.
This is exactly what Riggle (2006) proposes. On Riggle’s account, different grammar and lexicon
hypotheses are evaluated according to a measure of lexicon entropy. The measure, which is
somewhat different from Jarosz’s and which we will discuss shortly, is based on the following
principle:

(37) Lexicon Entropy Principle
Assume a universal constraint set CON. Whenever faced with a decision whether to
encode a phonological pattern as a consequence of constraint interaction or as an acci-
dent of the lexicon, the former option must be taken. (modified from Riggle 2006:347)

Riggle proposes that a grammar G be evaluated according to the conditional entropy of G’s
lexicon, defined in terms of bigrams as follows:

H(G) � � P(x, y) log2 P(y�x)(38) �
x��

�
y��

Given two hypotheses consistent with the data, the learner is expected to prefer the one for
which H(G) is higher. As an example of how this should work, consider again the ab-nese data
from section 2.1 and the three constraints *bb, MAX, and DEP. We will show why Riggle’s metric
rejects the identity hypothesis in favor of the correct lexicon and ranking combination. The data
are repeated in (39) and (40), along with the two competing hypotheses.28

28 Note that Riggle’s (2006) version applies to lean lexicons, in which lexical entries are single URs, rather than the
rich lexicons of Jarosz’s (2006a,b) system, in which lexical entries are distributions over possible URs.
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(39) Hypothesis 1 (identity)
Lexicon:

1. /ab/ 3. /aaab/ 5. /abaab/ 7. /babababaa/
2. /bab/ 4. /aabab/ 6. /babaaaa/ 8. /babababababaabab/

Corresponding ranking: any
Entropy: 0.57

(40) Hypothesis 2 (correct)
Lexicon:

1. /ab/ 3. /aaab/ 5. /abaab/ 7. /bbbbaa/
2. /bb/ 4. /aabb/ 6. /bbaaaa/ 8. /bbbbbbaabb/

Corresponding ranking: *bb, MAX �� DEP

Entropy: 0.88

The lexicon of Hypothesis 1 is identical to the surface data. Under any ranking of the three
constraints, all underlying representations would surface unchanged. The generalization that a
sequence bb is prohibited in ab-nese is captured only as an accident of the lexicon. As a conse-
quence, the lexicon contains predictable information that can be identified by computing probabili-
ties of adjacent segments: after seeing a b, there is a probability of 1 that a following segment
will be a. Formally, –P(b, b) log2 P(b|b) and –P(b, a) log2 P(a|b) will both be null (assuming
here for simplicity’s sake that 0 log 0 � limxN0 x log x � 0), not adding to the entropy of the
lexicon, which results in 0.57.

On the other hand, Hypothesis 2 has the predictable information about the absence of bb
sequences removed from the lexicon, resulting in a more irregular lexicon: seeing a consonant
or a vowel, it is hard to predict what the next segment will be. Here, all summands contribute to
the measure of entropy, which sums to 0.88—a higher entropy than that of the identity hypothesis,
Hypothesis 1. Importantly, given the lexicon of Hypothesis 2, a sequence bb must be resolved
by vowel epenthesis, entailing the more restrictive ranking *bb �� DEP.

We can see that Riggle uses entropy as a proxy for economy. In his proposal, entropy is the
only factor in the learning criterion. In particular, there is no pressure for restrictiveness. This
choice leads to the subset problem, the problem discussed earlier for the scientist using the original
SPE evaluation metric and the mirror image of the problem for Jarosz’s proposal. To see this,
consider first a version of Riggle’s proposal for ab-nese in which the constraints are not given
in advance and must be learned. In the absence of a pressure for restrictiveness, an entropic but
overgenerating grammar like the following will fare much better than the correct grammar:

(41) Hypothesis 3 (no constraints; entropic; overgenerates)
Lexicon: /aabba/
Corresponding ranking: (NONE: no constraints to rank)
Entropy: 1.0

In Lexicon 3, the bigram distribution is uniform: P(x|y) is the same (� .5) for any x and y.
It is thus maximally entropic. At the same time, it massively overgenerates: in the absence of
any constraints, the single UR /aabba/ can be mapped to any of the attested forms but also to
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any other form, all without incurring a single violation. In this case, then, entropy alone exposes
the learner to the subset problem, just as economy alone exposed the scientist to this problem in
our discussion earlier.

In Riggle’s actual proposal, the constraints are given to the learner in advance. With a
judicious choice of constraints, the subset problem is ameliorated, but we will show that it does
not disappear completely. Let us continue with our ab-nese example, and let us assume that the
learner is given the set of constraints that our phonologist from section 2 arrived at. In this
case, Lexicon 3 is no longer appropriate (since it does not generate the data), but the following
overgenerating hypothesis is just as entropic as the intuitively correct Hypothesis 2:

(42) Hypothesis 4 (overgenerates)
Lexicon:

1. /ab/ 3. /aaab/ 5. /abaab/ 7. /bbbbaa/
2. /bb/ 4. /aabb/ 6. /bbaaaa/ 8. /bbbbbbaabb/

Corresponding ranking: *bb �� MAX, DEP

Entropy: 0.88

Hypothesis 4 keeps the ranking *bb �� DEP, but it has MAX ranked together with DEP rather
than above it. As a result, all the correct surface forms are still generated from the intuitively
correct lexicon, but along with them we will also find unattested forms such as b (from the UR
bb), generated through b-deletion. This is an overgeneration problem: as long as URs with the
sequence bb are chosen with nonzero probability, the hypothesis wastes probability mass on forms
such as b that will never actually occur. Since lexicon entropy does not take restrictiveness into
account, such overgeneration will not lead to Hypothesis 4 being dispreferred.29

In order to assess the suitability of entropy as a pressure on hypotheses, then, we must
combine it with a pressure for restrictiveness. A natural way to accomplish this is by combining
it with Jarosz’s ML criterion. There are many different ways to combine two criteria into one,
and many of these (such as maximizing the sum—or the product—of the likelihood of the data
and the entropy of the lexicon) will address the problem of overgeneration without degenerating
into memorizing the input data.

Unfortunately, no combination of Riggle-like lexicon entropy with ML can work. To see
why, consider again the two lexicons for ab-nese that seemed to justify the entropy criterion.

29 Allowing MAX and DEP to be ranked together is in line with certain variants of OT—see, in particular, Anttila’s
(2007) argument for the use of such rankings to account for optionality; a similar state of affairs is also possible within
Stochastic OT (Boersma 1998, Boersma and Hayes 2001)—but we have chosen it here simply to make the presentation
of the current point easier. We could have made the same point while adhering to strict linear orderings of the con-
straints—for example, by considering a variant of ab-nese in which the following hold: two occurrences of b in a row
are okay; three are not; an underlying bbb sequence can be repaired by a single insertion of a after the first occurrence
of b but not after the second. A correct grammar would enforce the positional requirement on the insertion of a. For
Riggle, however, the ranking *bbb �� MAX �� DEP will do just as well, even though it overgenerates by allowing an
underlying bbb sequence to surface both (correctly) as babb and (incorrectly) as bbab.
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Lexicon 1 was more complex and less entropic than Lexicon 2, which seemed encouraging. But
consider now Lexicon 5, a lexicon based on c-deletion rather than a-insertion.

(43) Hypothesis 5 (entropic and restrictive but presumably bad)
Lexicon:

1. /cacbc/ 3. /caaaccb/ 5. /abaab/ 7. /babababaa/
2. /bab/ 4. /aabab/ 6. /babaaaa/ 8. /babababababaabab/

Corresponding ranking: *c, *bb, DEP �� MAX

Entropy: 0.95

Lexicon 5 is more complex still than Lexicon 1, but it is more entropic than either Lexicon 1
or Lexicon 2. In fact, infinitely many such lexicons are easily constructed, each more pointlessly
complex than the other and with higher entropy. Note that all the hypotheses in this case are fully
restrictive, so ML will not help choose between them. The decision is down to entropy, and
entropy leads us astray: it only cares about making the grammar less regular, but this can be
accomplished not just by removing orderly material, which is what we would like, but also by
adding disorderly material, which we would not. We conclude that economy must be represented
directly, as it is under MDL, rather than by proxy.

5 Discussion

5.1 MDL as a Guide for Learning

The simulation results address concerns sometimes raised in the literature regarding the ability
of MDL to yield the right results for learning. In particular, Adriaans and Jacobs (2006) and
Adriaans (2007) analyze the effects of MDL as a guide to learning and reach ambivalent conclu-
sions, focusing on the induction of deterministic finite-state automata (DFAs). They show, using
a measure of goodness that they refer to as randomness deficiency, that between two given DFAs,
the one with the lower description length is not necessarily the one that fares better with respect
to randomness deficiency; the DFA that minimizes description length globally, however, is best
also in terms of randomness deficiency. They conclude that MDL is a good guide globally but
a poor one locally.

In our simulations, progress is made by local comparisons of description length, which in
principle could lead to the kind of problem noted by Adriaans and Jacobs. (The constraints and
lexicons in our representations are quite different from Adriaans and Jacobs’s DFAs, but the
challenge they raise is presumably quite general.) However, our search uses Simulated Annealing,
which, as discussed above, can escape local traps by switching from a good hypothesis to a worse
one from time to time. As the simulation results show, our search indeed manages to reach the
target grammars in due course.

Adriaans and Jacobs (2006) raise another challenge to MDL learners: they observe, again
in the context of DFA induction, that such learners can be extremely sensitive to the choices that
are made in the encoding schemes. Here we are less sure what to say. On the one hand, our
simulations show that MDL supports successful learning within a linguistically significant formal-
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ism and across several different patterns. On the other hand, we have not undertaken a study of
the robustness of the learner to different choices. In our simulations, we have used various parame-
ter values that seemed sensible: most significantly, a certain initial temperature, a cooling agenda,
and a multiplier for the data. Anecdotally, different choices did not seem to make much of a
difference. Clearly, though, a systematic survey is in order.

5.2 MDL and the Typology

Heinz and Idsardi (2013) discuss a typological challenge for learning theories in phonology: most
attested phonological patterns are captured by particular subclasses of finite-state automata but
not by others. This does not appear to be an accident, which raises the question of how it can be
accounted for. Heinz and Idsardi propose an account in terms of learning procedures that work
with the attested subclasses of automata but do not cover the unattested ones. Within this context,
they express skepticism about a role for MDL in addressing this challenge based on the following
observation: sometimes a finite-state automaton that captures a typologically attested kind of
pattern is bigger than an automaton that captures a typologically unattested kind of pattern. If the
unattested patterns are representable, and if MDL is stated over finite-state automata, then MDL
is unlikely to bias learners toward the attested patterns.

Heinz and Idsardi discuss the length of very specific representations—namely, the finite-
state machines they use to describe the relevant patterns—and these representations do not corre-
spond to any of the main grammatical formalisms for phonology. (In particular, as we discussed
in detail above, the representations we have been using are quite different.) Given different
representations, grammar size can change, and we do not know whether Heinz and Idsardi’s
observation carries over to OT. But suppose, for the purpose of the present discussion, that it
did. As far as we are aware, none of the previous proposals in the OT learnability literature
(including those discussed above) attempts to account for typological patterns through the learning
algorithm: a common assumption within OT is that the learning mechanism must be able to induce
the correct grammar from a sufficient amount of typical data. Typological patterns, on this view,
may arise through the formalism—specifically, certain patterns will not be representable—as
well as through various factors having to do with communication, error, and exposure time.
Critically, though, they are not due to the inherent inability of the learner to learn something that
can be represented. Given this common assumption, a typological pattern such as Heinz and
Idsardi’s is generally no more challenging for one theory of OT learning than it is for another.
In this article, we have adopted this common assumption. Our goal has been to argue for MDL
as a learning theory for OT, and Heinz and Idsardi’s generalization is currently of no help in
choosing among such theories.

There is one typological question that our article raises and that we will leave open. In the
literature on OT, much of the burden of accounting for the factorial typology falls on the innate
set of constraints. To be sure, the influence of factors such as communication pressure is not
denied, but a great many generalizations about markedness are commonly taken to arise from
innately provided constraints that the learner brings to the task. Our article does not directly
challenge this assumption. Indeed, we have shown that the MDL evaluation metric can yield
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successful results in two cases—French-like optionality and Hebrew-like alternations—in which
the constraints were given in advance. But we have also shown that the MDL evaluation metric
can succeed in two cases—ab-nese and English-like aspiration—in which the constraints were
not given in advance and had to be induced from general constraint schemata. The simulations
involving constraint induction can be seen as motivation to investigate variants of OT in which
at least some of the constraints are learned, but any variant of this kind will need to account for
the typological patterns that those constraints were meant to capture.

5.3 Learning across Components

We have shown how the generality of the MDL evaluation metric allows it to apply to alternations
without changing the metric itself: all that was needed was an enrichment of the representations
to include possible suffixation. More broadly, we can consider learning across components, speci-
fying the representations for phonetics and morphology, for example, and letting the MDL evalua-
tion metric lead us to predictions regarding the order in which patterns in the different components
are learned. This is a natural continuation of the current work and one that we find interesting. We
note, however, that this direction—in which the learning criterion is uniform and any differences in
learning between components derives from differences in the possible representations—seems
incompatible with the view articulated by Heinz (2007) and Heinz and Idsardi (2013) that learning
in phonology is fundamentally different from learning in other components. We hope that this
article will make it easier to examine the two views and their implications more closely.

5.4 Comparing Architectures

Another question we wish to mention is whether predictions about learning can help choose
between competing hypotheses about representations. For example, we showed that the ability
to restrict the alphabet used within the lexicon gives the MDL learner a handle on learning the
distribution of aspiration in English. The status of such constraints on URs has been the topic of
debate in OT, with most of the literature rejecting constraints of this kind. The MDL evaluation
metric holds the promise of providing such architectural choices with an interpretation in terms
of predictions about learning.

6 Conclusion

We have argued for the MDL evaluation metric as the criterion for hypothesis comparison by
the learner. At first glance, the compression criterion at the heart of Solomonoff ’s (1960, 1964)
metric can seem foreign from the perspective of OT. We tried to show, however, that this criterion
is in fact familiar from the everyday work of the phonologist. We then presented the case for
using this criterion as a methodologically natural starting point to study the child’s learning
criterion: given any theory of UG, the ability to store grammars in memory and use them to parse
the data already provides the basis for using the MDL metric. We proceeded to present several
simulation results showing how the MDL metric can be used by a learner trying to make sense
of raw data. While clearly preliminary, these proof-of-concept results—all of them new—show



276 E Z E R R A S I N A N D R O N I K A T Z I R

how lexicons and constraint rankings can be induced, with and without supporting data from
alternations, and how the same metric extends to learning the constraints themselves.

Appendix A: Data

ab-nese

a, ab, ba, bab, aa, aab, aba, abab, baa, baab, baba, babab, aaa, aaab, aaba, aabab, abaa, abaab,
ababa, ababab, baaa, baaab, baaba, baabab, babaa, babaab, bababa, bababab, aaaa, aaaab, aaaba,
aaabab, aabaa, aabaab, aababa, aababab, abaaa, abaaab, abaaba, abaabab, ababaa, ababaab, aba-
baba, abababab, baaaa, baaaab, baaaba, baaabab, baabaa, baabaab, baababa, baababab, babaaa,
babaaab, babaaba, babaabab, bababaa, bababaab, babababa, babababab, aaaaa, aaaaab, aaaaba,
aaaabab, aaabaa, aaabaab, aaababa, aaababab, aabaaa, aabaaab, aabaaba, aabaabab, aababaa, aaba-
baab, aabababa, aabababab, abaaaa, abaaaab, abaaaba, abaaabab, abaabaa, abaabaab, abaababa,
abaababab, ababaaa, ababaaab, ababaaba, ababaabab, abababaa, abababaab, ababababa, abababa-
bab, baaaaa, baaaaab, baaaaba, baaaabab, baaabaa, baaabaab, baaababa, baaababab, baabaaa, baa-
baaab, baabaaba, baabaabab, baababaa, baababaab, baabababa, baabababab, babaaaa, babaaaab,
babaaaba, babaaabab, babaabaa, babaabaab, babaababa, babaababab, bababaaa, bababaaab, baba-
baaba, bababaabab, babababaa, babababaab, bababababa, bababababab, aaaaaa, aaaaaab, aaaaaba,
aaaaabab, aaaabaa, aaaabaab, aaaababa, aaaababab, aaabaaa, aaabaaab, aaabaaba, aaabaabab, aaa-
babaa, aaababaab, aaabababa, aaabababab, aabaaaa, aabaaaab, aabaaaba, aabaaabab, aabaabaa,
aabaabaab, aabaababa, aabaababab, aababaaa, aababaaab, aababaaba, aababaabab, aabababaa, aa-
bababaab, aababababa, aababababab, abaaaaa, abaaaaab, abaaaaba, abaaaabab, abaaabaa, abaaa-
baab, abaaababa, abaaababab, abaabaaa, abaabaaab, abaabaaba, abaabaabab, abaababaa, abaaba-
baab, abaabababa, abaabababab, ababaaaa, ababaaaab, ababaaaba, ababaaabab, ababaabaa,
ababaabaab, ababaababa, ababaababab, abababaaa, abababaaab, abababaaba, abababaabab, aba-
bababaa, ababababaab, abababababa, abababababab, baaaaaa, baaaaaab, baaaaaba, baaaaabab,
baaaabaa, baaaabaab, baaaababa, baaaababab, baaabaaa, baaabaaab, baaabaaba, baaabaabab, baaa-
babaa, baaababaab, baaabababa, baaabababab, baabaaaa, baabaaaab, baabaaaba, baabaaabab, baa-
baabaa, baabaabaab, baabaababa, baabaababab, baababaaa, baababaaab, baababaaba, baababaa-
bab, baabababaa, baabababaab, baababababa, baababababab, babaaaaa, babaaaaab, babaaaaba,
babaaaabab, babaaabaa, babaaabaab, babaaababa, babaaababab, babaabaaa, babaabaaab, babaa-
baaba, babaabaabab, babaababaa, babaababaab, babaabababa, babaabababab, bababaaaa, baba-
baaaab, bababaaaba, bababaaabab, bababaabaa, bababaabaab, bababaababa, bababaababab, baba-
babaaa, babababaaab, babababaaba, babababaabab, bababababaa, bababababaab, babababababa,
babababababab

Aspiration

ak, ap, it, up, khu, phi, phu, thi, khat, khit, khup, phit, phup, thik, thip, thit, akhap, akhik, aphap, aphat,
aphik, aphip, athit, athuk, ikhak, iphap, iphik, iphip, iphuk, iphup, ithap, ithit, khaat, khaik, khait,
khauk, khaup, khiap, khiat, khiuk, khuap, phaik, phait, phaut, phiik, phiit, phuat, phuik, phuit, thait,
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thauk, thiup, ukhak, ukhut, uphik, uphip, uphut, uthup, khakhu, khipha, khukhu, phakhi, phakhu, phaphu,
phatha, phikhu, phukhu, phuphu, thakhi, thatha, thathu, thikha, thikhi, thiphu, thuthu, khakhat, khakhup,
khakhut, khakpha, khaktha, khaphuk, khaphup, khapkhi, khapphi, khapphu, khapthi, khathut, khatkhu,
khatpha, khattha, khikhak, khikhap, khikpha, khikphi, khikthi, khiphak, khiptha, khipthi, khithap, khithat,
khithik, khithit, khitpha, khittha, khitthi, khitthu, khukhak, khukhip, khukhit, khukkha, khukkhi, khuktha,
khukthi, khuphap, khuphik, khuphip, khuphuk, khupkha, khuppha, khupphi, khupphu, khuthak, khutpha,
khutphi, khuttha, phakhak, phakhap, phakphi, phakphu, phaphuk, phaphup, phapkha, phapkhi, phathak,
phathik, phathit, phatpha, phikhak, phikhuk, phikphu, phikthi, phiphak, phiphuk, phipkhi, phipphi, phithak,
phithut, phitkhu, phitphi, phukhap, phukhup, phukkhi, phupkhi, phuppha, phuthak, phuthap, phuthup,
phutphi, phutphu, phutthi, phutthu, thakhat, thakkhi, thakkhu, thakphi, thakphu, thakthi, thakthu, thaphik,
thaphup, thapkhu, thapthu, thathap, thathip, thathuk, thathut, thatkha, thatkhu, thattha, thatthi, thikhuk,
thikhut, thiphap, thiphip, thiphit, thipkhi, thiptha, thipthi, thithik, thithut, thitkhi, thitthu, thukhat, thukhut,
thukthi, thukthu, thuphut, thuppha, thuthit, thutkhi

Optionality

tabil, tab, paril, tapil, tap, radil, labil, lab

Alternations

daag, daakt, katav, kataft, rakad, rakadet, takaf, takaft

Appendix B: Results from Segment-Based Simulations

As mentioned in section 3.3, we used a segment-based encoding of the lexicon to test the learning
of aspiration, but a feature-based encoding in all other simulations. Here we present alternative
results of the three remaining simulations (ab-nese, French optionality, and Hebrew alternations)
in which the segment-based encoding is used instead. The setting for each simulation is identical
to the setting reported in section 3, except for the French optionality simulation, in which the
input data include five words instead of eight. Otherwise, the final grammars reached are the
same.

ab-nese

Initial grammar

Description length: �Ginitial� � �D:Ginitial� � 4,628 � 201,600 � 206,228

a.

b.

(44)

Ginitial �
LEX:
CON:

{a, b}; bab, aabab, ab, baab, babaaa, babababaa, . . .
FAITH

Final grammar

Description length: �Gfinal� � �D:Gfinal� � 4,034 � 201,600 � 205,634

Gfinal �
LEX:
CON:

{a, b}; bb, aabb, ab, baab, bbaaa, bbbbaa, . . .
MAX([�cons]) ��  *[�cons][�cons] ��  FAITH
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Optionality

Initial grammar

Description length: �Ginitial� � �D:Ginitial� � 208 � 375 � 583

a.

b.

(45)

Ginitial �
LEX:
CON:

{a, i, b, p, d, t, l, r}; tab, tabil, tap, tapil, paril
FAITH ��  DEP([�high]) ��  MAX([�liquid]) ��  *[�cons][�cons]

Final grammar

Description length: �Gfinal� � �D:Gfinal� � 178 � 350 � 528

Gfinal �
LEX:
CON:

{a, i, b, p, d, t, l, r}; tabl, tapl, paril
*[�cons][�cons] ��  FAITH ��  DEP([�high]) ��  MAX([�liquid])

Alternations

Initial grammar

Description length: �Ginitial� � �D:Ginitial� � 492 � 24 � 516

a.

b.

(46)

Ginitial �

LEX:

CON:

{a, I, e, t, d, g, k, v, f, r}; katav, daag, rakad, takaf, kataft, daakt,
rakadet, takaft; Suffixes: {
FAITH ��  MAX([�cons]) ��  DEP([�ATR]) ��  IDENT([�voice])
��  IDENT([�cons]) ��  IDENT([�labial]) ��  IDENT([�labial])
��  IDENT([�high]) ��  IDENT([�high]) ��  *[�coronal][�ATR]
��  *[�coronal][�coronal] ��  *[�cons, �voice][�voice]

*[�cons, �voice][�voice] ��  *[�coronal][�ATR]
��  *[�coronal][�coronal] ��  IDENT([�high]) ��  IDENT([�voice])
��  DEP([�ATR]) ��  FAITH ��  IDENT([�labial]) ��  MAX([�cons])
��  IDENT([�labial]) ��  IDENT([�cons]) ��  IDENT([�high])

}

Final grammar

Description length: �Gfinal� � �D:Gfinal� � 376 � 16 � 392

Gfinal �

LEX:

CON:

{a, I, e, t, d, g, k, v, f, r}; katav{-t}, daag{-t}, rakad{-t}, takaf{-t};
Suffixes: {-t}
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